Amy Mayedo
Mentor: Dr. Jairo Diaz
Alcorn State University, Mississippi River Research Center
Center for Ecology & Natural Resources
1000 ASU Drive #209, Alcorn State, MS 39096
Mentor Profile: Dr. Jairo Diaz

- Director, Mississippi River Research Center, Alcorn State University
- Water Resource Engineer
 - Watershed and hydrological transport modeling
- Universidad Nacional de Colombia (Civil Engineering, B.S.)
- University of Puerto Rico (Civil Engineering, M.S.)
- Mississippi State University (Civil Engineering, Ph.D.)
Outline

• Equipment cataloguing and inventory
• Education for middle and high school student visitors
• Miscellaneous activities
• Field work
• Research
 – Runoff Quantity Assessment
 – Runoff Quality Characterization
Equipment cataloguing

YSI Sonde 6600

Outdated Equipment and Solutions
Outreach

June 20th: AgDISCOVERY Camp Students

July 22nd: U.S. Virgin Islands Students
Additional Activities

June 6th: Ag Field Day in Preston, MS

June 30th: Dissertation defense in Starkville, MS
ASU Land and Water Resources

• Lorman, Mississippi
• 1,700 acre campus
• Low elevation
• ~3,500 student population
• On-site water treatment plant

Image credits: Google Earth, BASINS
Stormwater Management

- Agricultural runoff
 - Crops
 - Cattle
- Urban runoff
 - Impervious surfaces
Mississippi Water Quality Standards
MS Department of Environmental Quality

- Standards for dissolved oxygen concentrations:
 - Daily average at or above 5.0 mg/L
 - Instantaneous measurement at or above 4.0 mg/L

- May – October standards for fecal coliform bacteria concentration
 - Colony maximum at geometric mean of 200 per 100 mL
Field Work Continued
Alcorn Experiment Station Watershed
61,200 sq. ft.

Animal Science Farm Watershed
183,049 sq. ft.
Equations Used

Turc Method
- Potential Evapotranspiration (PET)

Water Balance
- \(R = P - ET - \Delta S \)

Root zone water content
- \(\%VWC \rightarrow mm \)

Unit Conversions
- \(F \rightarrow C \rightarrow K \)
- \(\text{wat/m}^2 \rightarrow \text{cal/cm}^2/\text{day} \)
- \(\text{in} \rightarrow \text{cm} \rightarrow \text{mm} \)
- \(\text{sqft} \rightarrow \text{acres} \)

Averaging between intervals
- Daily
- Weekly
- Monthly

Topographic map
- Area
- Slope

\[
PET = 0.013 \left(\frac{T}{T + 15} \right) (R_s + 50) \left(1 + \frac{50 - RH}{70} \right)
\]

When RH < 50 percent

When RH > 50 percent

Image credit: Journal of the American Water Resources Association
Data Collection and Analysis
Data Analysis: Potential Evapotranspiration

- Defined as the amount of water that could evaporate and transpire without restriction other than atmospheric demand (Lu, Sun, McNulty, & Amatya, 2005, p. 621)
- Quantification of water lost to the atmosphere
- PET data calculated for high humidity season (March – June)

\[
\begin{align*}
PET & = 0.013 \left(\frac{T}{T + 15} \right) R_s + 50 \left(1 + \frac{50 - RH}{70} \right) \\
\text{RH} & > 50 \text{ percent}
\end{align*}
\]

where, PET is the daily PET (mm/day); T is the daily mean air temperature (°C); \(R_s \) is the daily solar radiation (ly/day or cal/cm²/d) and RH is the daily mean relative humidity (percent).
Data Analysis: Water balance

• Defined as a calculation of the inputs and outputs of water in a system

• Considers precipitation, PET, and storage changes of water
 • \(R = P - ET - \Delta S \)

• Quantification of runoff
Modeling: Runoff Hydrograph

- Measures the water flow of a precipitation event over time
- Performed with LIDIA (Low Impact Development Assessment)
- Key to understanding relationship between precipitation and runoff
- May 1st – 2nd precipitation event modeled for each watershed
 - 16 hour event
Animal Science Farm Hydrograph
May 1st - 2nd Precipitation Event
RESEARCH
Runoff Quality Characterization
Dissolved Oxygen

• Dissolved molecular oxygen content of water
 – DO concentration is affected by many environmental factors

• Measured using an amperometric instrument
 – Probe with temperature sensor and membrane

• Surface D.O. defined as <5 feet of depth
 – My measurements were taken between 6 – 18 inches of depth
Presence of Coliform

48 Hour Incubation Period

Primary Sedimentation Pond
West Lake
Samples taken July 17, 1:30PM

Northwest Lake
Sample taken July 22, 10:00AM
Research Conclusions

• ASU agricultural operations contribute significant volumes of runoff to wastewater retention bodies.

• A significant amount of dissolved oxygen measurements taken between June 24th– 28th were consistently below MDEQ standards at the time of measurement.

• Fecal coliform was present in the wastewater retention body samples on July 17th and 22nd.

My results suggest a relationship between low quality agricultural runoff and a decline in water quality.
Accomplishments

• Exposure to equipment maintenance and calibration
• Exposure to software and professionals relevant to my field of interest
• First time hands-on experience with GIS and modeling
• First time conducting field work
• Minority youth STEM outreach
Citations

Acknowledgements

MRRC Staff: Dr Jairo Diaz, Ms. Germania Salazar, Ms. Nancy Morehead