Causes of Gulf of Mexico Hypoxia

Nancy N. Rabalais¹ R. Eugene Turner²

¹Louisiana Universities Marine Consortium ²Louisiana State University

Center for Sponsored Coastal Ocean Research, Coastal Ocean Program, NGOMEX Hypoxia Studies

(Goolsby et al., 1999, Rabalais 2002)

(http://www.esl.lsu.edu)

Mississippi River

Atchafalaya River

New Orleans

(Photo: N. Rabalais)

Hypoxic Area

Overwhelming Sources of Water & Nutrients Nutrient effects are more far reaching than suspended sediment plume, esp. N

dominant wind direction

Nutrients, Increased Growth, Low Oxygen

(Rabalais et al., 2002)

Persistent, Annual, Bottom Water Hypoxia

- Mississippi River delta onto upper Texas coast
- strong salinity and temperature stratification
- 4 5 m nearshore to 35 45 m offshore
- 0.5 km nearshore to 100⁺ km offshore
- seasonal; most widespread and severe in May Sep
- 2001-2005 average 15,600 km² in mid summer

Persistent Over Extended Periods

July 1-12, 1993 NECOP (Bratkovitch et al.)

July 13-21, 1993 LATEX (Rabalais et al.)

July 24-30, 1993 NECOP (Rabalais et al.)

(Source: N. Rabalais, LUMCON)

Frequency of Hypoxia 1985 - 2005

more frequent down current from Mississippi and Atchafalaya rivers discharges
distribution varies monthly; nutrient flux, discharge, currents

climate driven differences

Estimated Size of Bottom-Water Hypoxia in Mid-Summer

Nutrient-enhanced carbon production leads to oxygen depletion, and the distribution and dynamics are bounded by the physics of the system.

Stratification

(mid-summer)

¹⁴ March through 12 November 2002

⁽Wiseman et al. 2004)

EOF (empirical orthogonal flow) analysis

(Wiseman et al. 2004)

Bottom Dissolved Oxygen (mg l⁻¹)

(Rabalais et al., in revision)

Prior and further analyses of timing and volume of discharge, timing and load of nutrients, particularly nitrate-N, timing and accumulation of carbon, and rates and temporal sequence of oxygen depletion are consistent with a seasonal cycle of nutrient-enhanced production, flux of organic matter and depletion of oxygen under persistent and strong water column stratification.

(Rabalais et al., in revision)

Bottom Oxygen, 20 m water depth, 1993

http://www.mvn.usace.army.mil/eng/edhd/tar.gif

More Nutrients, More Production, More Carbon Flux

Decreased Water Clarity Decreased Oxygen Concentration

(Rabalais et al. 20021)

(Turner et al. 2005)

Predicting Hypoxia in summer (nitrate flux in the spring, Apr-Jun, year)

Similar analyses with PO4, TP, TN, Si, various Si:N:P ratios indicate that N, in the form of NO3+NO2, is the major driving factor influencing the size of hypoxia on the Louisiana shelf.

(Turner et al. 2006)

Sediment cores taken from the Mississippi River bight where accumulation rates are between 0.5 and 2.5 cm y⁻¹.

Photo removed.

Fossil and chemical biomarkers from cores (in the last half of the 20th century):

- increased phytoplankton production
- Increased diatom biomass
- •Increased diatoms that are less silicified as $Si:N \rightarrow 1:1$
- Increased phytoplankton pigments
- Increase in TOC
- Increase in hypoxia tolerant benthic foraminiferans
- Loss of hypoxia intolerant benthic foraminiferans
- Increase in pigments of anoxygenic phototrophic brownpigmented green sulfur bacteria
- Worsening hypoxia stress
- Hypoxia has not always been present

The long-term changes are consistent with
the observational data on hypoxia and
coincident with the well-documented increase in nitrate export from the Mississippi River.

Important Factors for Hypoxia

Unimportant (or Minimal) Factors for Hypoxia

- Stratification
- Currents
- Winds, waves
- Nutrient-enhanced primary production
- High flux of surface carbon to the seabed
- Oxygen consumption exceeds oxygen resupply
- Directly proportional to N load

- Deep-water oxygen minimum layer
- Allochthonous river carbon
- Ground water
- Wetland erosion
- Estuarine nutrients
- Mississippi River mainstem
 and deltaic levees
- Reduced suspended sediments
- Upwelled nutrients
- Climate (not as yet)

Period of the explosive increase in coastal eutrophication around the world in relation to global additions of anthropogenically fixed nitrogen (from Boesch 2002).