Hypoxia and Nutrient Biogeochemistry: Lessons from Chesapeake Bay

W. Michael Kemp, Jeremy Testa & Rebecca Murphy

University of Maryland Center for Environmental Science, Horn Point Laboratory Cambridge, MD

NOAA CSCOR GoMEX Meeting Bay St. Louis, MS 27 March 2012

Outline of Talk

- Background on Chesapeake Bay hypoxia
- Long-term trends in Bay hypoxia
 - --Seasonal differences in trends
 - --Linking trends to climate & nutrients
- Hypoxia effects on nitrogen and phosphorus cycling
 - --Low O₂ enhances nutrient recycling
 - --Positive feedback between nutrients & hypoxia
- Implications for nutrient management of hypoxia
 - --Climate can affect hypoxia management
 - --Nutrient-hypoxia feedback can reinforce change

Chesapeake Bay and its Watershed

Location of Chesapeake Hypoxic Zone

(Hagy 2002)

Trend in Bay July Hypoxic Volume

• Long-Term Trends in Bay Hypoxia

--Seasonal differences in trends

--Linking trends to climate & nutrients

Hypoxia Trends in Relation to N-Loading

•N-Loading increased until mid-1980s, then declined gradually into **2000**sannual variations blur long-term trends; clarify with running means

•Early summer hypoxia shows rapid increase since 1980; not related to N-load

•Mid-summer hypoxia has actually declined parallel to the decline in N-load

•Hypoxia & N-Load highly correlated ($r^2 = 0.77$)

(Murphy et al. 2011. *E&C*)

Entire Summer Hypoxic Volume Trends

(Murphy et al. 2011. *E&C*)

Factors Controlling Hypoxia: Early vs. Late Summer

(Murphy et al. 2011. *E&C*)

Climate Effects on Mid-Summer Hypoxia: <u>North Atlantic Oscillation Index</u>

- Winter NAO Index reflects regional climate and ocean circulation
- NAO correlates well (r² = 0.51, p < 0.01) with early summer Bay hypoxia
- Negative NAO linked to southerly summer winds (ventilate bottom water)

(see: Kemp et al. 2009 BGS; Scully 2010 E&C; Scully 2010 JPO)

Decadal Average Hypoxic Volume vs. TN

N-Loading & Hypoxia Duration

- Number hypoxia days (bottom 5 m water)
- In mid-Bay, hypoxia duration is correlated significantly with Jan-May TN loads

CB4.4 CB5 CB5.2 **CB5.3** CB5 CB5 OCB6. CB6. **°CB6:3 CB6:4** °CB7.3 °CB7.4 (Murphy et al. 2011. E&C)

°CB3.2-

CB3:3C

CB4.1

CB4.2C

(b)

Controls on Hypoxia: Early vs. Late Summer

- Early summer hypoxia controlled by mixing and stratification
- Mid- to late-summer hypoxia controlled by nutrient availability

• Hypoxia Effects on Nitrogen and Phosphorus Cycling

--Low O₂ effects on nutrient recycling

--Positive feedback effects

Decadal Change in Bay July [NH₄+] Distribution

(Rebecca Murphy, JHU. unpublished)

Conceptual Model of O₂ Interactions with N-Cycle

(J. Testa & M. Kemp, Feb '11)

Conceptual Model of O₂ Interactions with P-Cycle

(J. Testa & M. Kemp, Feb '11)

Decadal Change in Bottom Water NH₄+ Pools

Benthic Fluxes of NH_4^+ & PO_4^{3-} vs. Bottom O_2

Nitrogen Recycling Efficiency vs. Bottom O₂

 $Efficiency = [(Flux_{NH4}) / (Flux_{N2} + Flux_{DIN})]$

(Boynton and Kemp 2008)

*NH*⁴ & *PO*³⁻ *Benthic Fluxes vs. Bottom Pools*

Time-Space Distributions of Bottom O₂, NH₄ & PO₄

Seasonal Trends in Bottom NH₄⁺ & PO₄³⁻ vs. O₂

Yearly Variations in N Loading & Bottom N Pools

Nutrient Pools per Load vs. Hypoxia Volume

⁽Testa & Kemp 2012. *L*&*O*)

Feedback Effects Linking Hypoxia & Nutrients

Concluding Comments

- Interannual variations in Chesapeake Bay hypoxia due to river flow
- Decadal increase in early summer hypoxia is controlled by climate
- Decadal decrease in late-summer hypoxia is controlled by nutrient loads
- Hypoxia enhances N & P recycling and creates a positive feedback
- Climate effects can slow or reverse effects of hypoxia management
- Hypoxia-nutrient "feedback link" will enhance both degradation & recovery

Temporal Mismatch in Fluxes Drives N:P Ratios

