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NGOMEX – Spatially-explicit, High-resolution Mapping 
and Modeling to Quantify Hypoxia Effects on the 
Living Resources of the Northern Gulf of Mexico 

PROJECT OBJECTIVES: 
 1. Conduct high resolution mapping of NGOMEX pelagic 

food web in relation of hypoxia. 
 
 2. Integrate our ecosystem measurements through a 

variety of models designed to assess the effects of 
hypoxia on pelagic food webs and production. 

 
 3. Quantify habitat suitability for economically important 

fishes. 
 
 4. Provide tools to forecast food-web interactions, habitat 

suitability and fish production in relation to hypoxia. 
 
  





 

• Zooplankton 
• Temperature 
• Dissolved oxygen 
• Salinity 
• Chlorophyll a 

Fish 
Biomass 

Baseline Field Sampling 



Transect Distance  (km) 

0 5 10 15 20 25 30 35 

P
re

ss
ur

e 
0 

10 

20 

30 

40 

Path of Scanfish 



Gear EcosystemComponent 03 04 06 07 08 10 
CTD Temp,DO,Salinity,Chla,PAR 15 15 67 59 77 32 

ADCP Currents X X X X 
FlowCytometry Microbialfood web X X X 
ZPPump Mesozooplankton X X X X X 
TAPS Mesozooplankton X X X X X X 
Scanfish/CTD/OPC Mesozooplankton,Temp,DO, 

Salinity,Chla 
X X X X X X 

Acoustics PelagicFish X X 42h 85h 107h X 
BottomTrawl BenthicFish 67 40 31 X1 

MidwaterTrawl PelagicFish X X X X1 

DIDSON Pelagic&BenthicFish 22h 
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Potential effects of hypoxia 
 on coastal zooplankton 

Deleterious 

• Direct 
– Lethal 

– Sub-lethal, e.g. 
– Slowed development 

– Reduced reproductive success 

• Indirect 
– Habitat reduction 

– Trophic interactions altered 

Beneficial 

• Refuge from less tolerant 
predators 

• Habitat reduction could 
enhance prey encounter 
rates 

• Selection for some 
species 
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NGOMEX: Relationship between zooplankton median 
depth and depth of the 2 mg ml-1 oxycline. 





NGOMEX SURVEY COMPARISONS 
 

    2003   2004 
Area Mapped (km2)   28,697   28,746 
   
Hypoxic Area (km2)   1,807   10,172 

 
Mean Zooplankton (mg C m-3) 

 
250-500µm ESD  0.77   0.98 
500-1000µm ESD  1.34   1.39 
1000-1500µm ESD  1.01   0.77 
1500-2000µm ESD  0.71   0.54 
2000-2500µm ESD  1.00   0.71 
TOTAL   4.84   4.39 







Taxonomic composition 

23,500 ind m-3 1,600 ind m-3 15,700 ind m-3 3,600 ind m-3 
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Hypoxic 

Alter spatial distribution 
 
Restrict vertical migrations 

 
Move to areas of poorer 
habitat quality (e.g. less food, 
change in temperature) 

 
Increased predator 
concentration 

 
Increased vulnerability to 
predation (e.g. increased 
light?) 

Hypoxia and Pelagic Fish 

Normoxic 



Increase prey 
concentration? 

 
Increase prey 
vulnerability (e.g. light) 

 
Better overall habitat 
conditions (e.g. growth) 

 
Can hypoxia be used as 
a refuge? 

 
Are there edge effects? 
 
 

Hypoxia and Pelagic Fish 

Normoxic 

Hypoxic 



Transect F 

Single layer Low Oxygen zone with 
little target activity (Sv = -74) 

Targets throughout the layer with the 
exception of the very bottom (Sv = -
62) 
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Fish Density and Oxygen levels 
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Figure 6 – Stomach contents from Atlantic bumper (top, n = 497) and striped 
anchovy (bottom, n=411). 







Tropical Storm Edouard 

 



Figure 9 – CTD profiles (left panels) and relative fish biomass (right panels) 
before (top panels) and after (bottom panels) a hurricane in August 2008. 





1

10

100

1000

10 100 1000

Primary Production (g C m-2 y-1)

Fi
sh

er
ie

s 
Yi

el
d 

(k
g 

ha
-1

d-1
)

15 Lakes > 10km2

(Oglesby  1977)

36 Marine Systems
(Nixon 1988)

Chesapeake Bay540



WE WILL USE MULTIPLE MODELS TO EVALUATE: 
 
 
What is the effect of the spatial extent and seasonal timing of hypoxia on fish growth,  
recruitment and production potential?  
 
How does hypoxia affect food web interactions in the pelagic zone? Specifically:  
  
 How will hypoxia affect the spatial distribution and predator-prey interactions of 
mobile organisms and zooplankton?  
  
 How does hypoxia affect habitat quality and suitability for economically and 
ecologically important fishes?  
 
How will management decisions on nutrient loadings affect fisheries through its impact  
on the timing and extent of hypoxia?  
 
What is the potential of strong wind events (and their relationship to climate change) to  
re-aerate the water column and alter the interactions of fish and their prey?  
 
What are the most effective tools to forecast food-web interactions, habitat suitability,  
and fish production in relation to hypoxia?  
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