Hypoxia Coordination Workshop

Incorporating Hypoxia Into The Fishery Management Process: To Be or Not To Be?

Steve Bortone Executive Director Gulf of Mexico Fishery Management Council steve.bortone@gulfcouncil.org

Fisheries Conservation and Management Act of 1976

- 1. Fisheries were declining (or at least not increasing)
- 2. Foreign fleets were operating within 3 miles of the U.S. coast
- 3. It was during the Cold War!

World Marine Fish Catch

Catch per capita

Fisheries Conservation and Management Act of 1976 (later - the Magnuson-Stevens Act - MSA) Established comprehensive federal management: 1. Loan programs to increase U.S. fishing capacity. 2. Created eight federal fishery management councils 3. Established a Fishery Conservation Zone to 200 miles (later called the Exclusive Economic Zone - EEZ) 4. Established National Standards

Regional Planning Areas have been approximated for illustrative purposes only and should not be construed as a legal or official boundary of any kind.

Established National Standards

- 1. Achieve Optimum Yield (OY) & prevent overfishing
- 2. Use the best scientific information available
- 3. Manage stocks as a unit
- 4. Allocations are fair and equitable, promote conservation, & prevent excessive shares
- 5. Consider efficiency & not have economic allocation as sole purpose
- 6. Allow for variation & contingencies
- 7. Minimize costs & avoid duplication
- 8. Consider fishing communities & minimize adverse impacts*
- 9. Minimize bycatch & bycatch mortality*
- 10. Promote safety of human life at sea*

* Added in 1996 reauthorization

The Councils use Fishery Management Plans (FMPs) and amendments to address problems identified in a particular fishery – usually by suggesting an Accountability Measure (i.e., size limit, bag limit, closed season etc.) to attain a specified catch level

...and there are Fishery Management Plans

Gulf of Mexico Fishery Management Council

Council Process Overview

In the Gulf of Mexico, there is a 3-mile inshore limit to federal jurisdiction off Louisiana, Mississippi, and Alabama and a 9-mile limit off Texas and Florida

It's Complicated !

Gulf Council membership...

17 voting members:

Governor appointments from states State resource managers from each state Fisheries Service Regional Administrator

Non-voting members: Gulf States Marine Fisheries Commission U.S. Coast Guard U.S. Fish and Wildlife Service U.S. Office of Foreign Affairs

= 11

= 5

17

Potential Gulf Council Products

- Fishery Management Plan (FMP)
- FMP or Regulatory Amendment
- Interim Rule for depleted stocks
- Emergency Rule (two 180-day periods)
- Accountability Measures
 - •In-season :

Size limits, bag limits, season closures
Post-season:
Adjust the guota

Scientific & Statistical Committee with special committees

How to Catch YOUR FAVORITE Fish in the Atlantic and Gulf of Mexico Finding New Hotspots
TIPS FROM THE PROS
Best Baits and Rigs

A Guide to Science, Design, and Use

Jack Sobel and Craig Dahlgren

Advisory Panels: include most of the Scientific & Statistical Committees plus...

SEDAR

<u>Southeast Data Analysis and Review</u> Involves:

- Fisheries scientists from the Southeast Fisheries Science Center in Miami
- Scientific & Statistical Committee members
- Council staff and Council members
- Other experts as appropriate

Magnuson-Stevens Reauthorization Act of 2006

Greater movement toward precautionary management:

- 1. Councils must set annual catch limits (2011)
- 2. Greater responsibilities for SSCs: estimate OFL & ABC
- 3. Tightens rebuilding timelines

Stocks the Gulf Council Manages 69 Species in all

Coastal Migratory Pelagics - Cobia, Mackerels, Sharks Reef Fish - Red, Vermilion, & Yellowtail Snapper Deep-water Groupers - Warsaw, Snowy, Misty Shallow-water Groupers - Gag, Black, Scamp, Yellowmouth Other Reef Fish - Triggerfish, Amberjack

Species	Overfishing	Overfished	
Red Snapper		Х	
Greater Amberjack	Х	Х	
Gray Triggerfish	X	Х	
Gag	Х	Х	

Changing gears!

LAUN U Nxygfn

釆

ļ**r** '

OVERCONFIDENCE...InCoOrDiNaTiOn USE OXYGEN OVER 12,000 FEET

$$F = \frac{\frac{n_1}{t} \log_e \left(\frac{n_1}{n_2}\right)}{N_e \left(1 - \frac{n_2}{n_1}\right)}$$

$$M = \frac{1}{t} \left[\log_e \frac{n_1}{n_2} \right] \left[1 - \frac{n_1}{N_e \left(1 - \frac{n_2}{n_1}\right)} \right]$$

Beverton & Holt equations for stock assessments

$$\frac{Y'}{R} = EU^m \left[1 - \left(\frac{3U}{1+m}\right) + \left(\frac{3U^2}{1+2m}\right) - \left(\frac{U^3}{1+3m}\right) \right] \quad (8)$$

where $U = 1 - \left(\frac{L_e}{L_{\infty}}\right); \ m = \frac{1-E}{\frac{M}{K}} = \frac{K}{Z}; \ \text{and} \ L_e = \text{length}$

$$N_{y+1,0,g}^c = \lambda^c R_0^T \frac{4hB_y^c}{B^c(1-h) + B^c(5h-1)} e^{\varepsilon_y} - \sigma_T^2/2$$

stock

$$V_{y+1,0,g}^{c} = \lambda^{c} R_{0}^{T} \frac{4hB_{y}^{c}}{B_{0}^{c}(1-h) + B_{y}^{c}(5h-1)} e^{\varepsilon_{y}} - \sigma_{T}^{2}/2 \times e^{\eta_{y}^{c}} - \sigma_{C}^{2}/2$$

EcoSim/EcoPath – biomass components

<u>CMPs</u>	HMPs LC sharks	Seat	Seabirds		Dolphins	
king mack. (2 stanzas) Span. mack. (2 stanzas) dolphinfish/wahoo/tunnies/jacks	SC sharks billfish & tuna	sardine/ com	'herring plex	sm. oce. pel. (flyingfish, ballyhoo)		
red snapper (2 stanzas) other DWG vermilion snapper gag grp. (3 stanz	ree (gru wras	reef carn. (grunt, porgy, wrasse, perch)		reef omn. (angelfish, surgeonfish, chub)		
other snapperred grp. (3 stanzetilefishblack grp. (3 stanzeyellowedge (3 stanzas)goliath grp.	lg. (drui	lg. coas. carn. (drum, sheepshead, catfish)		sm. coas. carn.		
rays/skates Mullets	Coastal piscivores (tarpon, snook, seatrout)		coas. omin. (pinfish)		searobbin, lizardfish)	
Benthic Invertebratesshrimpbivalveslobstersses. epibenthoslarge crabssmall infaunaoctopodssm. mob. epifaunastomatopodsmeiofaunaechino./g-podsmicrobes	anchovies, silversides Zooplankton sm. copepods mesozooplankton carn. zooplankton ichthyoplankton carn. jellyfish	ben. n macro phyto seagra	PPs nicro algae palgae plankton ass	M Sd	Detritus vater column ediment ead discards	

Ecopath with Ecosim

Primary Production on the West Florida Shelf

Nitrogen Loads, Chl-a, and estimated phytoplankton biomass in the Gulf of Mexico

Chlorophyll Plumes on West Florida Shelf (Gilbes et al. 1996) – "Green River Phenomenon":

$$\begin{split} \log_{e} C_{yt} &- \log_{e} C_{bt} \\ &= (\log_{e} q_{ym,g} - \log_{e} q_{bm,g}) + \alpha (\log_{e} K_{yt} - \log_{e} K_{bt}) \\ &+ \beta (\log_{e} \operatorname{Len}_{yt} - \log_{e} \operatorname{Len}_{bt}) + (\log_{e} z_{y0} - \log_{e} z_{b0}) \\ &+ m_{f} \left(\sum_{i=0}^{t-1} \frac{H_{yi}}{w_{i}} - \sum_{i=0}^{t-1} \frac{H_{bi}}{w_{i}} \right) \\ &+ \sum_{i=\tau-t+1}^{t} a_{1i} (\operatorname{OI}_{yi} - \operatorname{OI}_{bi}) \\ &+ \sum_{i=\tau-t+1}^{t} a_{2i} (\operatorname{TI}_{yi} - \operatorname{TI}_{bi}) \\ &+ \sum_{i=\tau-t+1}^{t} a_{3i} (\operatorname{SI}_{yi} - \operatorname{SI}_{bi}) + b_{1} (\log_{e} O_{yt} - \log_{e} O_{bt}) \\ &+ b_{2} (\log_{e} T_{yt} - \log_{e} T_{bt}) + b_{3} (\log_{e} S_{yt} - \log_{e} S_{bt}) \\ &+ (\varepsilon_{yt} - \varepsilon_{bt}). \end{split}$$

Huang, L, M.D. Smith, & J.K. Craig. 2010. Quantifying the economic effects of hypoxia on a fishery for brown shrimp *Farfantepenaeus aztecus*. Marine and Coastal Fisheries: Dynamics, Management, and Ecosystem Science 2:232-248.

Coastal & Marine Spatial Planning

Ecosystem-Based Management Indicators

- Impetus: limited resources to fully assess exploited species and ecosystems
- Desire for ecosystem-based approaches to fisheries management (EBM)
- Indicators:
 - Reflect processes
 - Serve as signals of something more basic or complicated (NRC 2000).
- Long history of use in sciences

MD DNR Juvenile Striped Bass Index Arithmetic Mean (AM) Catch per Haul

Juvenile index: Annually since 1954; 22 fixed stations; Jul. (I), Aug. (II), & Sep. (III). Replicate seine hauls (30.5-m x 1.24-m bagless beach seine, 6.4-mm mesh).

Tautog Spawning Stock Biomass Source: ASMFC 2011 Tautog Stock Assessment Update

Indicator selection for Ecosystem-Based Management for the GOM

- Are indicators appropriate or adequate for GOM?
 - Data availability
 - Management Goals
 - Focus on status or trend
 - Trend detection:
 - Indicators over time

Appropriate analytical technique to balance
 Type I & II errors

What is a trend?

- 1. General: general tendency or direction (eyeball)
- 2. Statistical: Indicator_{ij} = $x_i + y_j + x^*y_{ij} + \varepsilon_{ij}$; p < 0.05
- 3. Useful:
 - Integrates long and short term properties of series
 - Low error probability (Type I & II)
 - Scientifically grounded
 - Simple and flexible enough to apply to variety of metrics
 - Incorporates uncertainty
 - Assumptions can be evaluated via simulation or data
 - Easy to communicate results to wide audience

What is a trend?

time

Alternative Methodology

ECOLOGICAL INDICATORS 9 (2009) 732-739

Intersection-union tests for characterising recent changes in smoothed indicator time series

Verena M. Trenkel*, Marie-Joëlle Rochet

Alternative methodology cont.

Table 1 – Test results for recent trends and chang Southern North Sea fish ($\alpha = 0.05$) using linear reg *p*-Values for χ^2 -test for GAM model fit to entire tir decreasing (\Im), increasing (\eqsim) or stable. Change derivatives (\square); positive derivatives (\sqcap).

	1984- 2006 χ ² p- value	2004-2006			
Scientific name		LR p- value	LR	MK	IU
Agonus cataphractus	0.001	0.06	\$	\$	2
Arnoglossus laterna	0.051	0.51	\$	\Leftrightarrow	
Buglossidium luteum	0.039	0.64	\Leftrightarrow	\Leftrightarrow	\bigtriangledown
Callionymus lyra	< 0.001	0.92	\Leftrightarrow	\Leftrightarrow	⇔2
Chelidonichthys gurnardus	0.001	0.07	\Leftrightarrow	\$	\Leftrightarrow
Clupea harengus	< 0.001	0.42	\$	\Leftrightarrow	5
Echiichthys vipera	0.052	0.40	\Leftrightarrow	\Leftrightarrow	1000
Enchelyopus cimbrius	0.002	0.19	\Leftrightarrow	\Leftrightarrow	2
Engraulis encrasicolus	< 0.001	0.31	\Leftrightarrow	\Leftrightarrow	2
Ammodytidae	< 0.001	0.96	\Leftrightarrow	\Leftrightarrow	8

Long and short term properties

•Low probability or error (Type I & II)

Scientifically grounded

•Flexible

•Incorporates uncertainty

Assumptions can be evaluated

•Easy to communicate results?

Examples

- Data: Annual Catch Limit data set used to inform harvest levels for data-poor GOM managed species
 - Landings
 - Ibs whole weight
 - Recreational
 - For-hire
 - Commercial
 - 1986 2009

- Based on methodology of Trenkel and Rochet 2009

Yellowfin Grouper

Wenchman

long-term trend

long-term trend

