

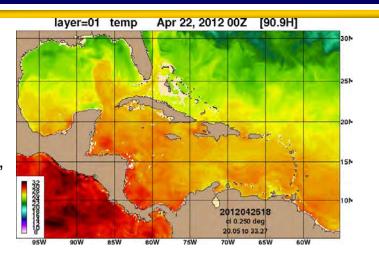
Hypoxia Forum Brief

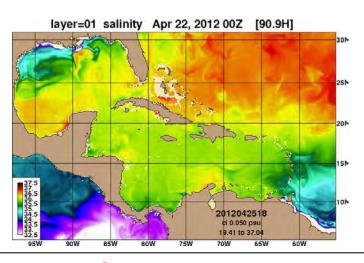
Lessons from the Trenches of an Operational Ocean Modeling Production Center

Frank L. Bub

Naval Oceanographic Office

Code NP3M


Frank.Bub@Navy.mil / 228-688-4758


Global Hybrid Coordinate Ocean Model (G-HYCOM)

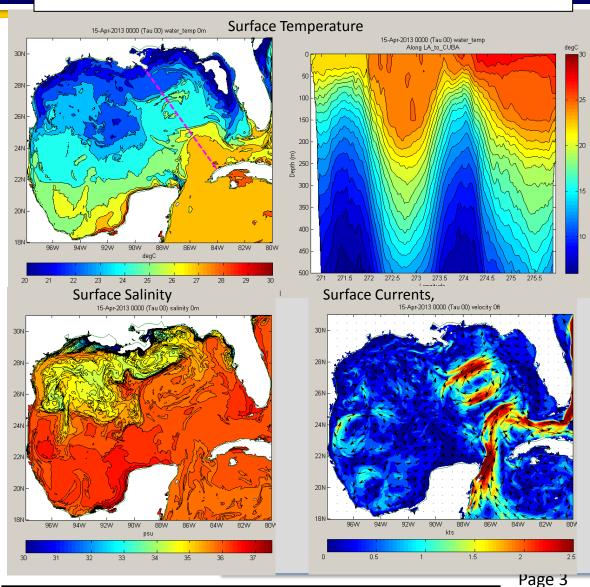
- POM-based / variable vertical coordinates
- NOPP Consortium
 - NRL lead,
 - U Miami, Los Alamos, French, NOAA/AOML, etc.
- Forecasts 3D Temperature, Salinity, Currents, Elevation
 - To 168 hours (7 days)
 - ESMF backbone
- Initial global resolution 1/12 deg (2012)
 - Model 40+ vertical layers
 - Pressure, depth, sigma coordinates as needed
- FNMOC NOGAPS → NAVGEM atmospheric forcing
- Assimilates SST / SSH / surface obs / profile data – using NCODA
- Operational March 2013
- Global service to Navy, NOAA, others

365-day
Temperature
Elevation
Salinity

NRL Stennis graphics
NAVOCEANO Model

1/12 (9 km / 5 nm) \rightarrow 1/25 deg (3.8 km / 1.8 nm) in 2014

Regional Navy Coastal Ocean Models (R-NCOM)



AMSEAS R-NCOM 96-Hr Series

- Boundary Conditions provided by HYCOM
- FNMOC COAMPS forcing
- 3D Forecasts
 - T, S, Currents, Elevation
 - Resolution1 / 30 deg
 - 55 vertical layers
- Forecast to 72/96 hr @ 3hr increments
- Assimilates data from
 - Satellites (SST, SSH)
 - insitu obs (XBTs, CTDs, floats, buoys)
- First East China Sea (ECS) NCOM operational MAR08
 - Implement 3 4 regions/year
- Eventual transition to COAMPS-5 (coupled atmosphere—ocean—waves)

1/30 deg (3.7 km / 2.0 nm)

4/19/2013

Approved for Public Release, Distribution is Unlimited

Agenda Key Concept – Operational Modeling

- Plan Ahead
 - Customers
 - Support
 - Interactions
- Determine your Capacities
 - Computers
 - People
 - Software
- Automate the Process
 - Be efficient
- Delivery the Products

Plan Ahead

- Establish your customer base(s)
 - Set their and your objectives early
 - Determine requirements
 - Talk their language
 - Get adequate funding
 - Make sure it will be for the long term
 - Research \$\$ expire
 - Plus-ups will do you in!
- Consider your approach carefully
 - Set up the model to meet customer applications
 - Link in development team
 - Create a transition plan
- Communicate!
 - Be interactive keep channels open
 - Relate customer needs → development plans → production → customer
 - Objective is to get R&D to operations, results to users

Establish & Evaluate Your Capacities – 1 Available Computer Power

Computer processing

- Double or triple what you think you need
- Each operating system has different requirements

Communications

- Can you get your data in or out?
 - Forcing fields (atmosphere, boundary conditions)
 - Observations for assimilation / assessment
 - Products
- Don't stretch it (i.e., clog network)
- Ensure you will be meeting customer needs

Storage

- Only keep what you need
- Consider compression
- Establish purge process (don't need old forecasts)
- Set up easy access via data mining and extraction

Establish & Evaluate Your Capacities – 2 Have the Right People

- Good people are key
 - Knowledgeable
 - Dedicated
 - Have enough
 - Two-person rule
- Establish development team early (Ops plus R&D)
 - Open and constant communications
 - Common language
 - Proper skills
 - Training
 - Documentation
 - Communication

- Operations Team
 - Implementation group (R2O)
 - Monitoring (Model OPS)
 - Part of process
 - Notification when a problem
 - Trouble-shooting and repair
- Forecasting and Analysis Team
 - Use and interpret
 - Interactive with the customer
 - Ocean forecaster
 - Know how customers use the products

Establish & Evaluate Your Capacities – 3 Manage the Software

Start to finish

- Pre-processing, main production, post-processing
 - Scripts
 - Main algorithms
- Accessible (readable) by others
- Development uses or knows operational environment
- Include monitoring links (eventbased)
 - Data base
 - Constant update
- Portable
 - Success will lead to upgrades

- Computers change
- Do you plan to share with others?

Robust

- Minimize human interactions
- Multiple fallbacks
 - Automated repairs when possible
- Troubleshooting guidance
- Configuration managed (CM)
 - Tested changes
 - Easy reversion
 - Offsite backup
- External validation & certification

Automate the Production Process

Minimize manual intervention

- Script control from start to finish
- No 24/7 needed for ocean modeling
- Monitor production
 - Use a check list (web / wiki)
 - Automatic alerts for major events
 - Automatic alerts for problems
 - Keep timelines schedule versus actual
- Build an operations manual
 - What does each script do?
 - Follow checklists
 - Tell how to restart

- Log issues & fixes (trouble tickets)
- Record lessons learned
- Provide feedback to R&D
- Efficiency, efficiency, efficiency

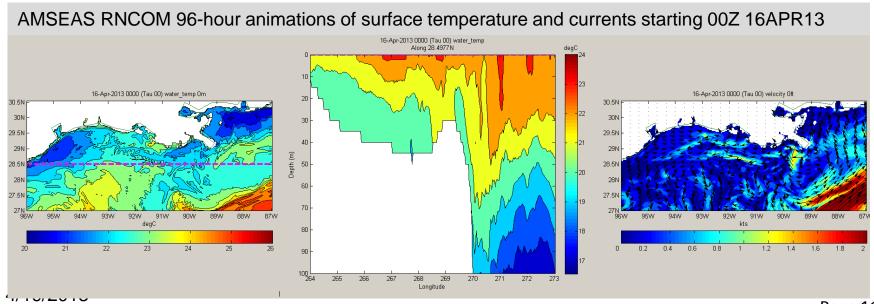
4/19/2013

Concentrate on Product Delivery

- Use standard and acceptable formats
 - NetCDF, JPEG, GIS
 - Ensure customer has easy access
- Have products arrive "on time"
 - Rule: timeliness more important than better accuracy
 - If not on time, know and convey forecast skill decay
- Produce levels of content
 - Quick and easy (image)
 - Full package (data files)
 - Interpolated products

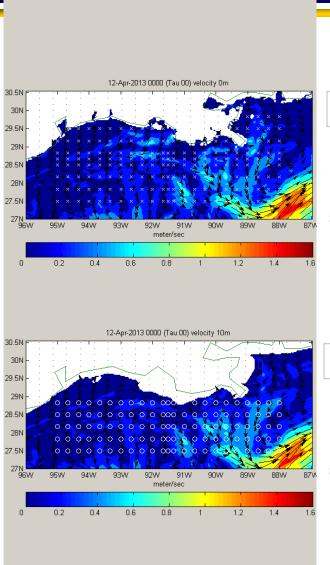
Include metadata!

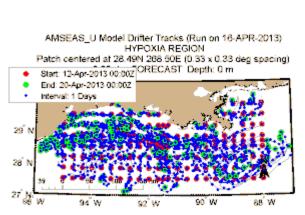
- Ensure customer access
 - At various levels of requirement / interest / knowledge
 - From browsing to downloading
 - Ensure ease of use
 - Limit the spinning wheels
 - Subset just what needed
 - Subscription service (when product is there, start download)
 - Download in background

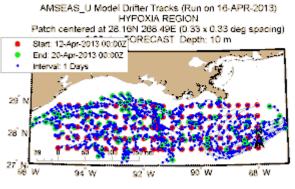


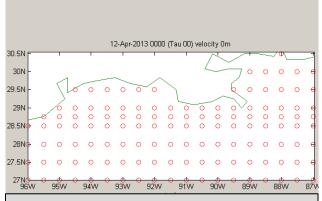
Summary Keys to a Successful Operational Modeling System

- Make a Plan, Stick to It
 - Customers
 - Support
 - Interactions
- Live within your Capacities
 - Computers
 - People
 - Software


- Automate the Process
 - Be efficient
- Deliver the Products






Hypoxia Region 8-Day Currents and Drift Plots

- 8-day surface currents at 6-hour times steps
- Surface and 10m (33ft)
- 00Z 12APR13 to 24Z 20APR13
- Drifters seeded 0.5 degrees apart

NAVOCEANO Model Data Sources

- NRL Stennis Website
 - HYCOM: http://www7320.nrlssc.navy.mil/GLBhycom1-12/skill.html
 - Graphics (tau 00 daily analyses, 30-day, 365-day animations)
- NOAA Ocean Prediction Center (OPC) Website
 - RNCOM: http://www.opc.ncep.noaa.gov/Current fcasts.shtml
 - RTOFS (NCEP HYCOM)
 - Graphics, access to NetCDF files
- NOAA OceanNOMADS Website
 - http://ecowatch.ncddc.noaa.gov/
 - AMSEAS: http://ecowatch.ncddc.noaa.gov/amseas/
 - Graphics, access to NetCDF archives
- NOAA ERDDAP Website (Northern Gulf Institute)
 - http://coastwatch.pfeg.noaa.gov/erddap/index.html
 - Graphics and data subsetting and manipulation available