The Mechanistic Model, GoMDOM: Development, Calibration and Sensitivity Analysis

Timothy J. Feist¹, James J. Pauer², Wilson Melendez³, Phillip A. DePetro⁴, Amy M. Anstead⁴, John C. Lehrter⁵, Michael C. Murrell⁵, Russell G. Kreis, Jr.²

¹Trinity Engineering Associates, Inc., ²USEPA/ORD/NHEERL/MED, ³Computer Sciences Corporation, ⁴ICF International, ⁵USEPA/ORD/NHEERL/GED

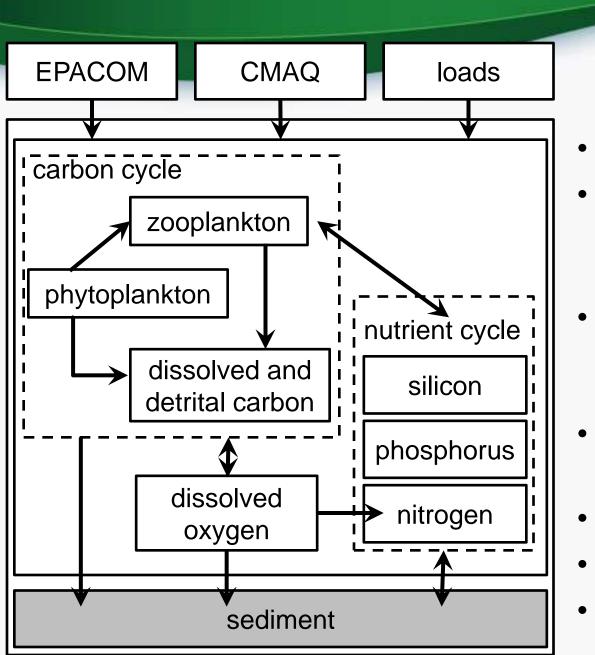
April 18, 2013

Partners

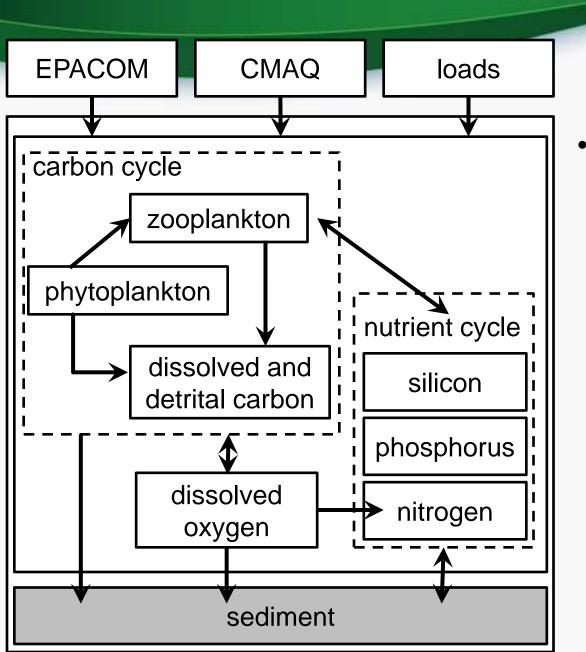
- A joint effort between the USEPA's Mid-Continent Ecology Division (Grosse IIe, MI) and Gulf Ecology Division (Gulf Breeze, FL).
- Contract support from Trinity Engineering Associates, ICF International and CSC
- Hydrodynamics from Naval Research Lab
- Atmospheric loads from USEPA ORD, National Environmental Exposure Laboratory
- Additional computer support by USEPA Environmental Modeling and Visualization Lab

Objective

- Goal: Achieve a five-year running average areal extent of the Gulf of Mexico hypoxic zone of less than 5,000 km² (Mississippi River Gulf of Mexico Watershed Nutrient Task Force)
- **Question:** What nutrient (nitrogen and phosphorus) load reductions are necessary to achieve this goal?
- **Task at hand:** Develop a water quality model to provide a mechanistic connection between nutrient loadings and model-predicted hypoxia area, duration, and frequency.


Model Background

- Gulf of Mexico Dissolved Oxygen Model GoMDOM
- Similar kinetics to CE-QUAL-ICM (Cerco and Cole 1993, 1995)
- Code from LM3-Eutro (Melendez et al, 2009, Pauer et al, 2006, 2008)
- Added dissolved oxygen kinetics
- Use "relatively simple" kinetics to start, add complexity as needed

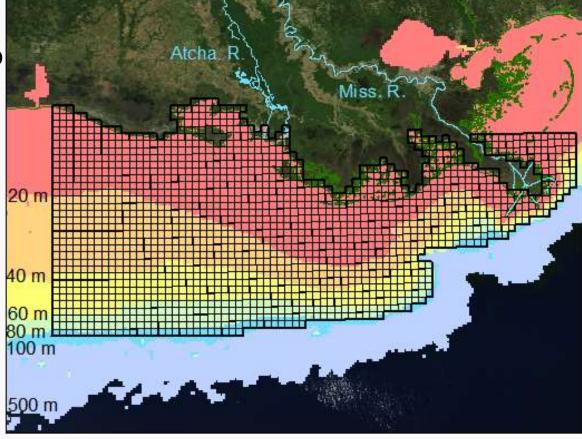


Model Assumptions – Supporting Models

- EPACOM version 5 NRL hydrodynamics model
 - aggregated ~ 2 km cells to ~6 km for GoMDOM
 - advective and dispersive flows, temperature, solar radiation, wind
- CMAQ EPA atmospheric model
 - atmospheric nitrogen loads
- GoMDOM-1D served as kinetics test platform and for preliminary parameterization

- UNITED STATES LONG
- 20 state variables
- nitrogen
 - NO₃, NH₄
 - DON, LON, RON
- phosphorus
 - SRP, DOP, LOP, ROP
- carbon
 - DOC, LOC, ROC
- silicon SA, SU
- 2 phytoplankton
- 1 zooplankton

- dissolved oxygen
 - primary production
 - reaeration
 - respiration and metabolism
 - DOC mineralization
 - nitrification
 - sediment oxygen demand
 - (Lehrter et al. 2012, Murrell and Lehrter 2010)


Scalability - Model Requirements

- Written in Fortran, runs on LINUX server, single CPU
- 365-day model runs
- Uses 5-minute time step

Scalability – Model Grid

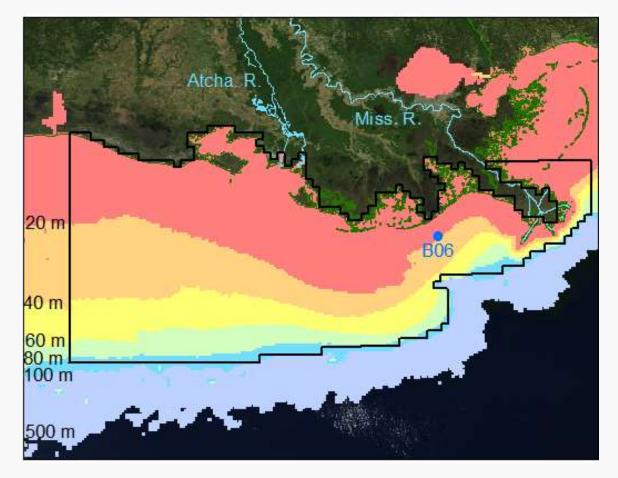
- Grid from shore to 100 m contour
- ~6 km x ~6 km cells
- 26 sigma layers
- 1695 cells/layer
- 44,070 total cells
- 56 tributaries

Model Inputs

- Tributary loading sources
 - N, P, and Si loads from major tributaries from USGS estimates (Aulenbach et al. 2010)
 - C and D.O. loads and minor tributaries from STORET concentration data and USGS flows
- Initial and boundary concentrations based upon GED cruises 2003-2007
- Is being calibrated to 2006 GED cruise data, corroborated to 2003

Model Status

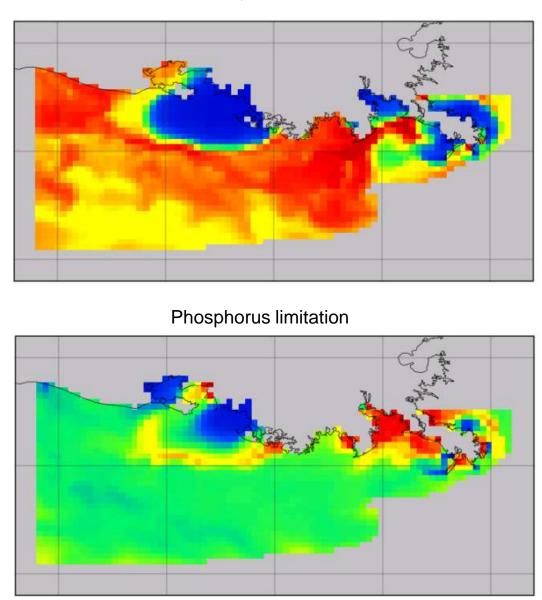
- Calibration (2006 data) nearing completion
- Model represents processes well
- Needs additional refinement


Model Status - Future Work


- Complete final calibration, corroboration (2003 data), and sensitivity analyses
- Run model for years 2003-2007 to assist in evaluating relationships between nutrient loads and hypoxic area
- Include updated NRL hydrodynamics
- Model code is being parallelized
 - 2 km x 2 km grid version
 - Extend boundary farther offshore

The results are preliminary, please do not cite

 Station B06 will be shown as an example


Preliminary Results Phytoplankton Biomass

Station B06 Model run for year 2006

Lines = model output Triangles = GED data

(includes data from one sigma layer above and below model)

Nitrogen limitation

0.4

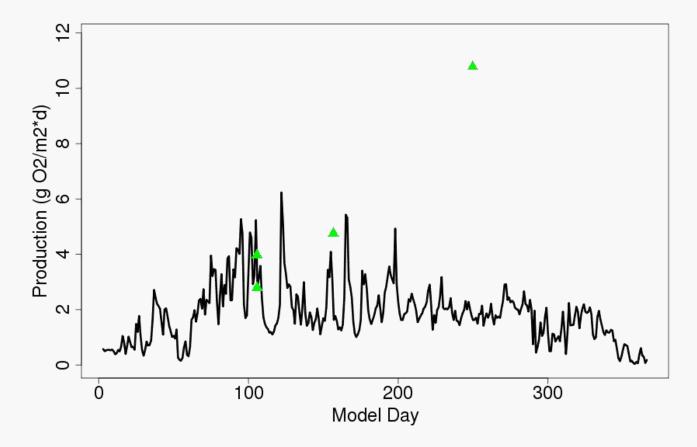
0.2

0.0

0.6

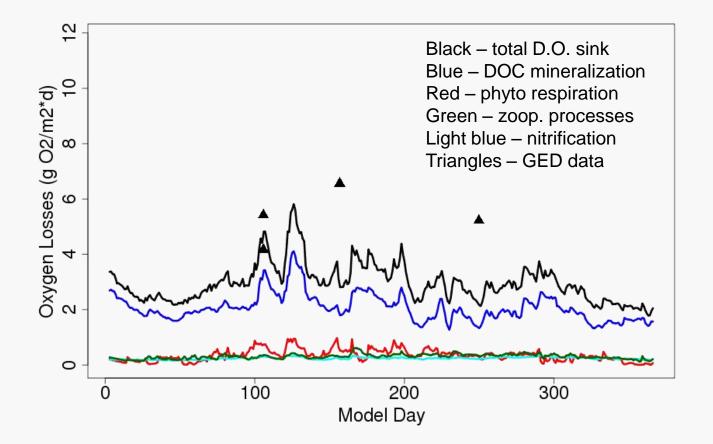
0.8

10

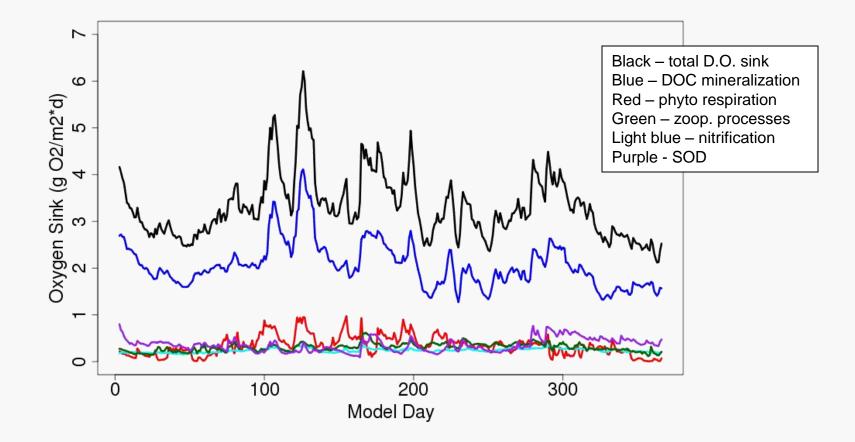


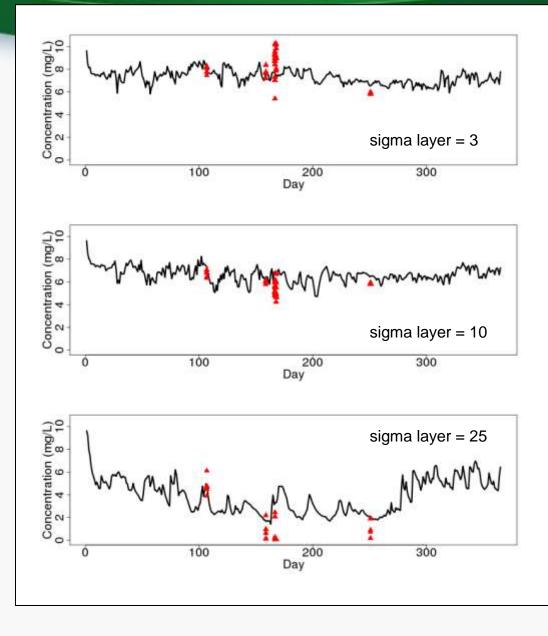
Preliminary Results N/P limitations

Results for date July 1, 2006



Preliminary Results: Primary Production





Preliminary Results: Water Column Respiration

Preliminary Results: Total Oxygen Demand

UNITED STATES

Preliminary Results Dissolved Oxygen

Station B06 Model run for year 2006

Lines = model output Triangles = GED data

(includes data from one sigma layer above and below model)

Preliminary Results Model Simulation Hypoxic Area

UNITED STATES

Preliminary Results Mass Balance and Sensitivity

Nitrogen Mass Balance	(kg/yr)
Sources:	
Tributary, sediment, atmospheric loads	1.1e+09
Cross-boundary flow in	1.1e+10
Sinks:	
Cross-boundary flow out	1.2e+10
Settling	2.4e+08

Preliminary Results Mass Balance and Sensitivity

Carbon Mass Balance	(kg/yr)
Sources:	
Tributary loads	2.9e+09
Cross-boundary flow in	1.1e+11
Primary Production	1.5e+10
Sinks:	
Cross-boundary flow out	1.1e+11
DOC mineralization	1.3e+10
Biological processes	5.8e+09
Settling	1.2e+09

Preliminary Results Mass Balance and Sensitivity

Oxygen Mass Balance	(kg/yr)
Sources:	
Tributary loads	3.9e+09
Cross-boundary flow in	3.3e+11
Photosynthesis	3.9e+10
Reaeration	1.8e+10
Sinks:	
Cross-boundary flow out	3.3e+11
DOC mineralization	3.6e+10
Biological processes	1.5e+10
Nitrification	5.1e+09
Sediment oxygen demand	8.3e+09

Summary

- Important processes in modeling Gulf hypoxia:
 - Hydrodynamics, including vertical movement and crossboundary flows
 - DOC mineralization
 - Organic carbon and nitrogen:
 - sources (tributary, boundary concentration, autochthonous)
 - lability and availability
 - mineralization rates
 - Sediment oxygen demand

Concerns and Remaining Needs

- Additional process studies and biological data
 - Algal bioassays and cell counts
 - Zooplankton data
- Increased spatial and temporal coverage for sediment studies
 - Settling
 - Sediment oxygen demand
- High frequency monitoring data

Thank You

Tim Feist feist.timothy@epa.gov James Pauer pauer.james@epa.gov Russ Kreis kreis.russell@epa.gov

U.S. Environmental Protection Agency