Science of the Causes of Hypoxia Nancy Rabalais et al.

In support of overview of diversions and hypoxia, and context for refining science needs; July 14, 2014

Mid-summer shelfwide Monthly/bimonthly along transects C & F Deployed oxygen meters

Important Factors for Hypoxia

- Stratification
- Currents
- Winds, waves
- Nutrient-enhanced primary production
- High flux of surface carbon to the seabed
- Oxygen consumption exceeds oxygen resupply
- Directly proportional to N load
- N+P is most limiting, N alone more than P alone

Unimportant (or Minimal) Factors for Hypoxia

- Deep-water oxygen minimum layer
- Allochthonous river carbon
- Ground water
- Wetland erosion
- Estuarine nutrients
 - Mississippi River mainstem and deltaic levees
 - Reduced suspended sediments
 - Upwelled nutrients
 - Climate (not as yet)

(Source: N. N. Rabalais, LUMCON)

Mississippi delta blues

Distant deuterium and the Big Bang Dawn of the primates Skeletal genetics

1.)

Coastal hypoxia is NOT natural and began to appear mostly after the 1950s

Linked Land, River, Ocean Ecosystem

Data source: N.N. Rabalais, Louisiana Universities Marine Consortium, R.E. Turner, Louisiana State University Funded by: NOAA, Center for Sponsored Coastal Ocean Research

Mississippi River Discharge at Tarbert Landing, 1935-July 2014

http://rivergages.mvr.usace.army.mil/WaterControl/Districts/MVN/tar.gif

300% increase in N load 80% due to NO₃⁻ concentration ↑ 20% due to discharge ↑

Turner et al. 2007

eixoo

The relationship between nitrate+nitrate loading in May and the size of the hypoxic zones from 1985 to 2012. The 2014 predicted size is indicated with the red dot (with a 95% confidence interval.)

A area of bottom-water hypoxia is much larger now than historically at the same NO_{3+2} loading. Mitigating high nutrient loads will be more difficult now than in the past.

Turner and Rabalais, 2014 Hypoxia Forecast

The concentration of nitrite+nitrate (NO2+3) at Baton Rouge, La from 1997 to May 2014. The % nitrite+nitrate load of the total nitrogen load for May in the main channel of the Mississippi River. Data source: USGS.

Turner and Rabalais, 2014 Hypoxia Forecast

Nutrient Bioassays over Broad Spatial and Temporal Scales Identify Nutrient Limitations in the Area of Hypoxia

The terrestrial carbon signature (-27 to -24‰) in coastal surface waters parallels peaks in river discharge, and organic carbon offshore (-22 to -18‰) represents an atmospheric source.

The N source of particulate organic matter along the C transect is primarily from the river (-4 to 10‰) and subsequently incorporated into *in situ* production offshore.

G

Rabalais et al. 2014. Courtesy of Björn Wissel, University of Regina, and Brian Fry, Griffith University. River data from US Geological Survey

FVCOM LaTex Model

FVCOM

WASP

IBM

Wang and Justic (2009); Justic and Wang (2014); Rose et al. (2014)

Successfully Coupled FVCOM-WASP

C

22.22

Justić and Wang, 2013

Wang and Justić, 2009

Hypoxia in the Northern Gulf of

An Update by the EPA Science Advisory Board

Supports and Strengthens the Science

- N loading drives timing and extent of hypoxia
- P loads significant in watershed and Gulf of Mexico
- HAP recommends dual N & P reduction strategy
- Upper MSR and Ohio-TN sub-basins account for the 84% nitrate-N and 64% total P flux to Gulf
- Tile-drained, corn-soybean landscapes very N leaky
- The HAP recommends targeting the tile-drained Corn Belt region of the MARB for N and P reductions in both surface and sub-surface waters.

Potential N Reduction (1000 mt N/yr)

C

Data Source: Mitsch et al. 1999, 2001; CENR 2000

() '

FVCOM Barataria Bay Model Numerical Grid - Detail

Justic and Wang (in preparation)

Surface Trajectory Modeling in the Deepwater Horizon Oil Spill (May 29 – June 25, 2010)

Posthurricane Land-towater conversion

New Die Caernarvon Claimette diversion

Baile

Naomi

Saint Bernard

Reference area

W Pt a la Hache

Alliance refinery

55 square miles of wetlands lost

Caernarvon flow path 12 Feb 2009

Lake Pontchartrain Bloom

Photographs by R.E. Turner, LSU

nrabalais@lumcon.edu http://www.gulfhypoxia.net

CustomInk.com

RCH INITIATIVE

GULFOF

CustomInk.com

3

still

Years

&

