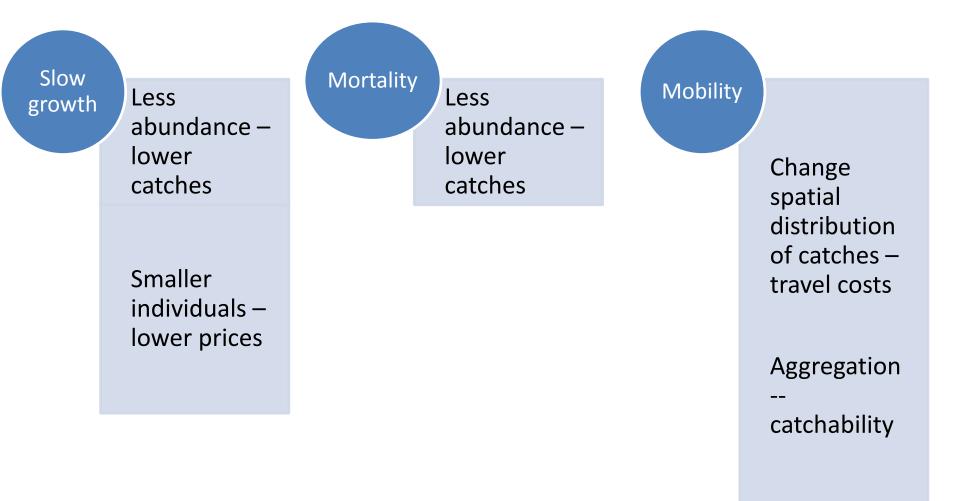
Economic Effects of Hypoxia on Fisheries

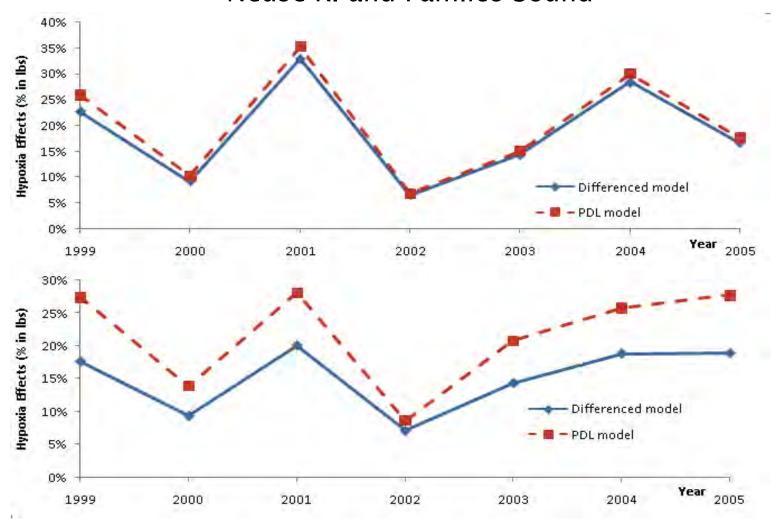

Martin D. Smith

Nicholas School of the Environment Duke University

July 15, 2014

Thanks to NOAA Grant# NA09NOS3780235

Mechanisms for Hypoxia to Affect Economic Performance in Commercial Fisheries


Approaches

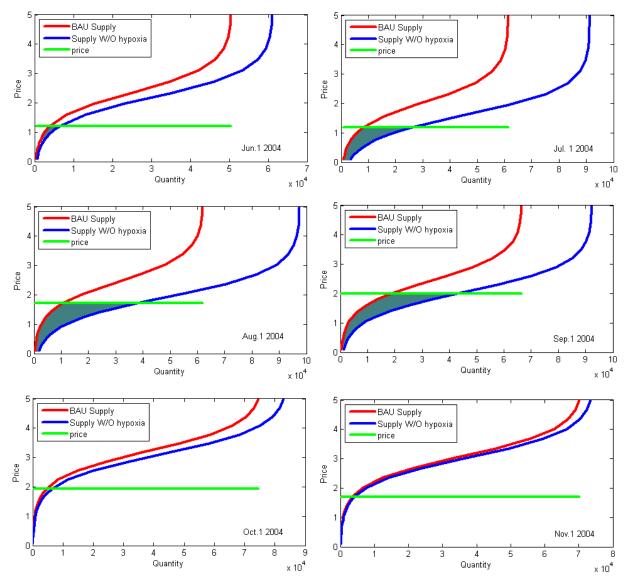
- 1. Empirical bioeconomic modeling
- 2. Treatment effects
- 3. Bioeconomic simulation
- 4. Time series analysis of prices

Future: combine 1 and 3

1. EMPIRICAL BIOECONOMIC MODELING OF HYPOXIA AND SHRIMP FISHERIES

Impact: Lost Catches From Hypoxia Neuse R. and Pamlico Sound

Huang, Smith, and Craig (2010)

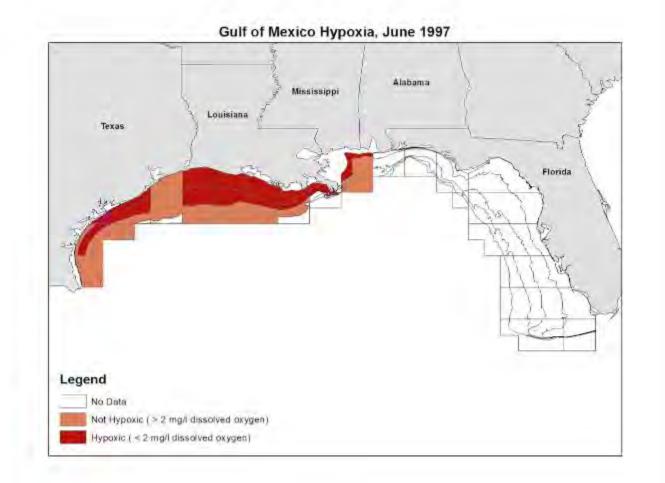

"Measuring Lagged Economic Effects of Hypoxia in a Bioeconomic Fishery Model" Marine and Coastal Fisheries: Dynamics, Management, and Ecosystem Science

From impacts to value

- Price for NC shrimp determined non-locally no effects on consumers
- A hypothetical reduction in hypoxia would increase revenues by \$1.2 million annually
- A hypothetical reduction in hypoxia would increase value \$0.3 million annually (~25% of revenue loss)

Huang, Nichols, Craig, and Smith (2012) "The welfare effects of hypoxia in the NC brown shrimp fishery" *Marine Resource Economics*

Actual economic losses are only 25% of revenue losses



3. TREATMENT EFFECTS –HYPOXIC AREAS AS "TREATMENT" AND NON-HYPOXIC AREAS AS "CONTROLS"

Subarea-Depth Zone

Snapshot of Hypoxia

Treatment Effects Models

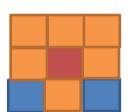
- Triple differences space, time, and hypoxia
- In(Catch) dependent variable with Effort as independent variable
- 31-choice conditional logit model with BLP contraction mapping and stratified random sample of the fleet to predict Effort and purge endogeneity
- Fixed effects for year, month, zone, year-zone

Conditional Logit Restults

Variable	Estimate	std error	t-stat
Wind Speed	-2.2196	0.0423	-52.4610
Shrimp Price	8.9512	0.2109	42.4349
Diesel Price	-15.6177	0.4554	-34.2954
E(revenue)	0.2567	0.0039	66.3616
E(catch)	0.1784	0.0040	44.3949
Distance	-42.3594	0.1210	-350.1362

Treatment effects results

- No statistically significant effect on aggregate catches
- No statistically significant pattern of effects on individual size classes
- No statistically significant dynamic (lagged) effects of hypoxia
- Still exploring alternative identification strategies


3. BIOECONOMIC SIMULATION

Results from Prior Work

- Economic benefits from reduced hypoxia are temporary increases in profits (Smith and Crowder, *Sustainability*, 2011)
- Gains from improved fisheries management of NC blue crabs far outweigh gains from eliminating hypoxia (Smith, Land Economics, 2007)
- Optimal fishery management response to hypoxia (in shrimp/annual species) – open season earlier, but gains are small (Huang and Smith, *Ecological Economics* 2011)
- Improved environmental quality becomes a margin for rent dissipation (Smith, Annual Review of Resource Economics 2012)

Gulf Shrimp Spatial-dynamic Bioeconomic Simulation

(Smith et al. Marine Resource Economics 2014)

Space as (3 x 3) Grid with stochastic hypoxia (worse in middle)

$$\begin{split} N_{0,j,y} &= \widetilde{N}(1 + \varepsilon_{j,y})\theta_{j} & \text{Re} \\ N_{t,j,y} &= N_{0,j,y}e^{\sum_{s} - m_{s} + \sum_{s} - f_{s}} & \text{S} \\ m_{t} &= \beta(L_{t})^{\rho} & \text{Na} \\ f_{t} &= qE_{t} & \text{Fis} \\ L_{t} &= L_{\infty}(1 - e^{-\delta t}) & \text{G} \\ w_{t} &= \omega(L_{t})^{\gamma} & \text{Alloc} \\ H_{t} &= \frac{f_{t}}{f_{t} + m_{t}}(1 - e^{-f_{t}})w_{t}N_{t} & \text{H} \end{split}$$

Recruitment Survival Natural Mortality Fishing Mortality Growth Allometric (length to weight)

Harvest

Hypoxia Adjustments $\widetilde{m_t} = (1 + \Delta_m)m_t$ $\widetilde{q_t} = (1 + \Delta_q)q$ $\widetilde{\delta_t} = (1 - \Delta_\delta)\delta$

 $N_{a,t,j,y}$ Now adding cohorts!

Spatial-dynamic Bioeconomic Simulation

$$U_{ijt} = v_{itj} + \eta_{ijt}$$
 Random Utility Maximization

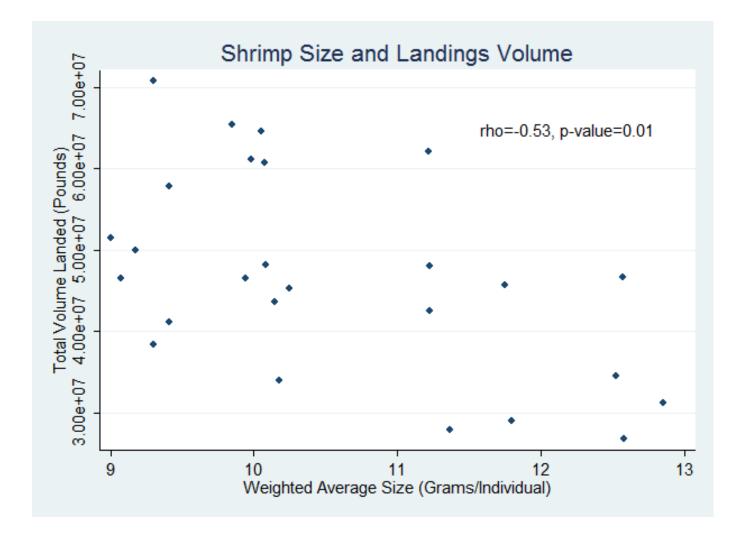
$$v_{iij} = \begin{cases} \alpha, & \text{for } j = 0\\ p_t h_{ijt} - c - \phi l_{ij}, & \text{for } j = 1, 2, 3, \dots J \end{cases}$$
 from Smith et al. *PNAS* 2010

 $p_t = \overline{p_t} + \varphi w_t$

- -

Weight-based Prices

$$E_{t,j} = I\left(\frac{e^{v_{i,t,j}}}{\sum_{k=0}^{J} e^{v_{i,t,k}}}\right)$$


Effort (closes the model)

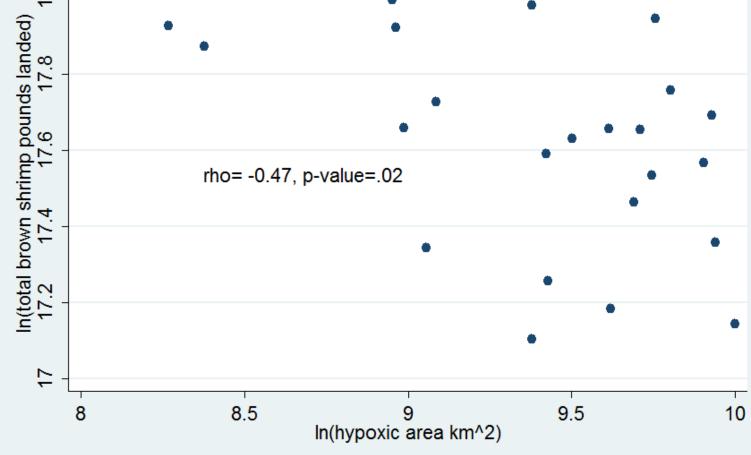
Key Lesson Detecting hypoxic effects from perfect data would be difficult

Simulation Outcome 1 Weighted shrimp size and total landings negatively correlated in simulations

- All correlations are negative and statistically significant (range rho = -0.31 to -0.67)
- Robust across hypoxic and counterfactual (nonhypoxic) cases
- Growth overfishing as key mechanism

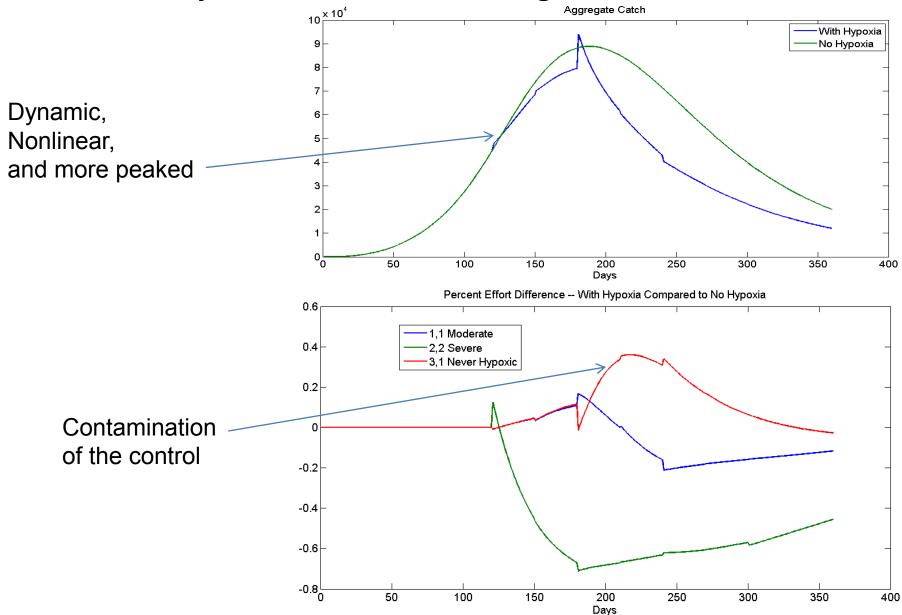
Robust Relationship Between Landings and Average Shrimp Size in Simulations Appears in the Empirical Data

Simulation Outcome 2

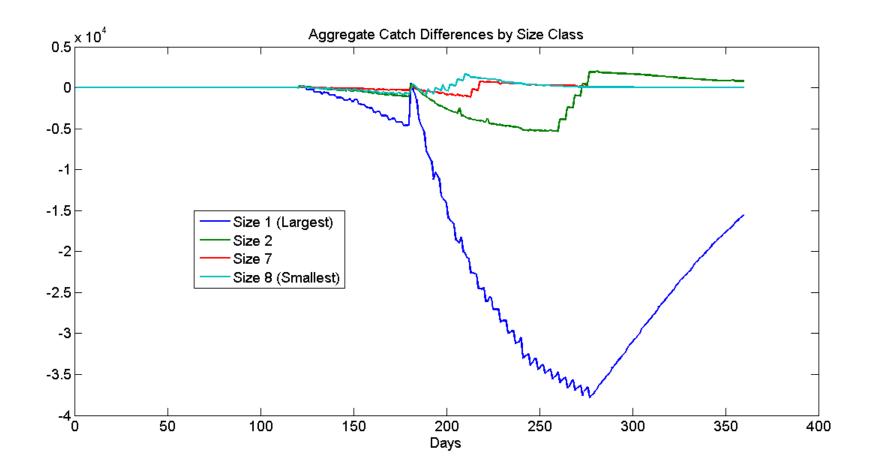

Total landings and hypoxic severity negatively correlated in simulations but weakly

(thought experiment of hypoxic extent with no counterfactual)

		Hypoxia Sir	nulations			Counterfactual Non-Hypoxic Simulations			
Sim#	Mortality	Catchability	Growth	Combined		Mortality	Catchability	Growth	Combined
1	-0.35	0.01	-0.14	-0.31		-0.25	-0.05	-0.05	-0.17
2	-0.08	0.01	-0.12	-0.10		0.03	-0.05	-0.02	0.07
3	-0.14	0.17	-0.01	-0.34		-0.04	0.11	0.08	-0.17
4	-0.35	-0.16	-0.23	-0.10		-0.21	-0.21	-0.11	0.04
5	-0.09	0.16	-0.05	0.03		0.03	0.10	0.04	0.22
Bold means significant at 5% level, italics significant at 10% level.									

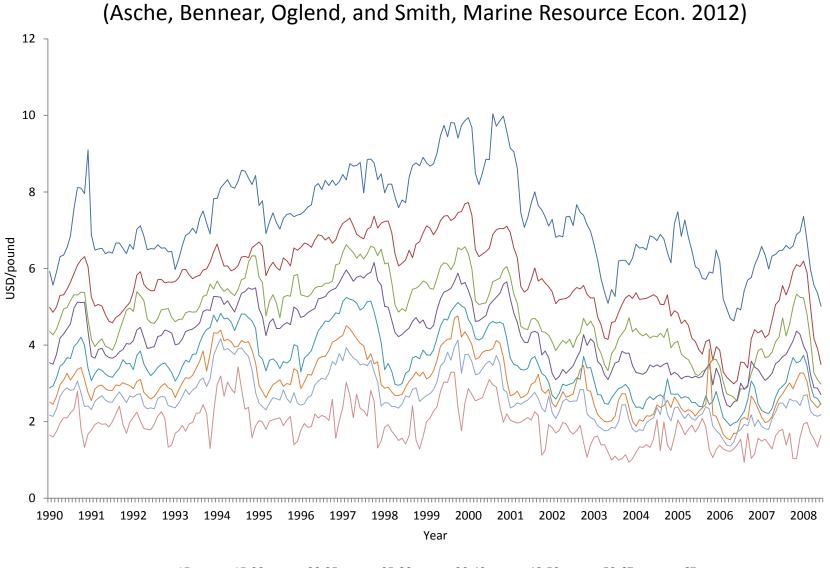

Empirical annual total landings negatively correlated with hypoxia

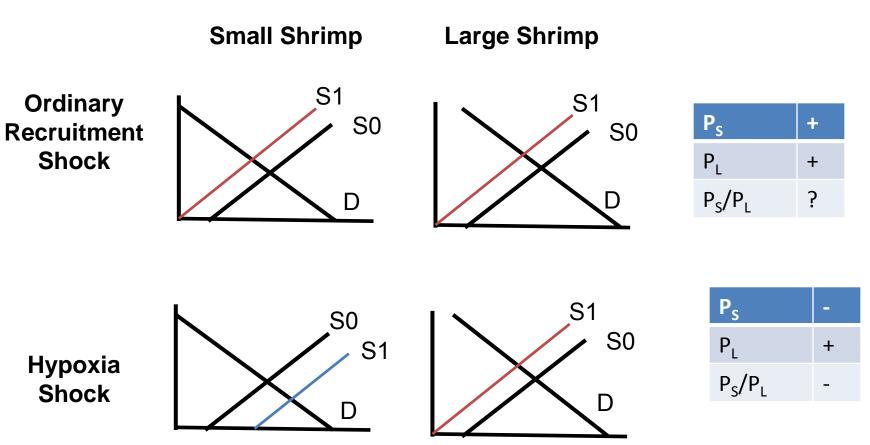
April through March Annual Landings (1986-2010)



Simulation Outcome 3

Major roadblocks in detecting treatment effect!


Simulation Outcome 4 Non-monotonic treatment effects in size-based catches


Aggregate-level data and bioeconomic simulations are generally consistent but highlight difficulty in finding effects of hypoxia on fisheries

4. TIME SERIES ANALYSIS OF SHRIMP PRICES – LET THE MARKET REVEAL THE ECOLOGICAL DISTURBANCE

Brown Shrimp Price by Size Class (#/pound) Prices have stable long-run relationships

Hypothesis: Hypoxic mechanisms change relative prices (deviate from long-run relationships)

Key assumption: markets determine what a meaningful supply shift is

Hypoxia "causes" increase in relative price of large to small shrimp

B15-B3040	COEF	STD	T-VAL
Interpolation 1	0.054	0.026	2.038
Interpolation 2	0.014	0.018	0.824
B1520-B3040			
Interpolation 1	0.073	0.026	2.765
Interpolation 2	0.037	0.015	2.441
B2025-B3040			
Interpolation 1	0.047	0.019	2.482
Interpolation 2	0.046	0.011	4.355
B15-B4050			
Interpolation 1	0.067	0.031	2.159
Interpolation 2	0.036	0.022	1.682
B1520-B4050			
Interpolation 1	0.085	0.031	2.713
Interpolation 2	0.058	0.020	2.901
B2025-B4050			
Interpolation 1	0.058	0.026	2.194
Interpolation 2	0.068	0.016	4.130
B15-B5060			
Interpolation 1	0.089	0.032	2.756
Interpolation 2	0.088	0.021	4.233
B1520-B5060			
Interpolation 1	0.105	0.037	2.849
Interpolation 2	0.110	0.021	5.315
B2025-B5060			
Interpolation 1	0.078	0.033	2.374
Interpolation 2	0.119	0.019	6.251

Results robust to including fuel prices, sea surface temperature, and seasonal dummies!

Future Work

- Refine spatial-dynamic bioeconomic simulation
- Build structural econometric model forced by simulation model (using Method of Moments) to estimate deep parameters
- Run parameterized structural model with hypoxia turned on/off to trace out economic effects