COMPUTER PROGRAMMING TOOLS TO SUPPORT WATER RESOURCES STUDIES AT THE GEOSCIENCES RESEARCH INSTITUTE

Mentor: John Ramirez-Avila & Sandra Ortega-Achury

Internship Location: Walker Engineering Building at Mississippi State University

Things about...me.

- My name is Augustine Tran.
- I am currently attending Mississippi State University.
- I am 3rd year junior and will be a senior this coming Fall.
- I am majoring Electrical Engineering .

MISSISSIPPI STATE

Things about... Dr. John J. Ramirez-Avila.

• Education:

Ph.D. in Civil Engineering. College of Engineering. Mississippi State University, MS, U.S.A., 2011

M.S. in Soils Science. University of Puerto Rico. Mayagüez, Puerto Rico, 2005

B.S. Agricultural Engineering. Universidad Nacional de Colombia. Bogotá D.C., Colombia, 1999

Area of Expertise / Interest:

Environmental physics, quality, management and conservation of soils, water and watersheds; field and laboratory methods and procedures for the assessment and monitoring of soil and water resources.

Things about... Sandra L. Ortega Achury.

Education

MS, Soil Science, University of Puerto Rico, 2005 BS, Agricultural Engineer, Universidad Curcolombiana, Colombia, 2002

Research Interest

Water Quality Monitoring and Modeling Water and Soil Conservation Soil and Water Sampling and Analysis Procedures Sediment Transport Soil Erosion

Internship Outline

- I. Laboratory Work
 - Clean & Sterilize Lab Equipment
 - Dry & Organize Lab Equipment
- II. Data Collection for Tombigbee River Basin
 - USGS Ground Water , Surface Water, & Peak Flows
 - NCDC Precipitation & Air Temperature
- III. Programming Tools for Data Analysis <u>PROGRAMS</u>
 - Daily Flows (File Conversion & Monthly / Yearly Statistics)
 - Water Level (File Conversion & Monthly / Yearly Statistics)
 - Move & Make (Column Correction & Retrieval)
 - Soil Test Analysis(Parameter Statistics & Summary)
- IV. Software Application
 - PKFQWin

Laboratory Work

Cleaning Procedure I. Rinse with water II. Remove labels III. Wash with brush and

water

Ripse with doionizod

V. Rinse with 10% HCLVI. Rinse 3x with deionized water

/II. Dry and store in cabinetry

ophate free detergent

Data Collection USGS Ground & Surface Water

, indivi	idual sites can be obtained l	by selecting the site number below	
Agency	Site Number	Site N	Fach county provided
USGS	02376500	PERDIDO RIVER AT BARRINEAU PARK, FL	Each county provided
USGS	<u>02377500</u>	STYX RIVER NEAR LOXLEY, AL.	stations along with daily
USGS	<u>02377570</u>	STYX RIVER NEAR ELSANOR, AL.	water discharge and
USGS	<u>02377960</u>	BLACKWATER RIVER AT CO RD 87 NEAR ELSAI	water uischarge and
USGS	<u>02378170</u>	WOLF CREEK BELOW FOLEY, ALA	ground water depth values
USGS	02378300	MAGNOLIA RIVER AT US 98 NEAR FOLEY, ALAI	5
USGS	<u>02378500</u>	FISH RIVER NEAR SILVER HILL AL	
USGS	<u>02450250</u>	SIPSEY FORK NEAR GRAYSON AL	For overy county in the
USGS	<u>02450500</u>	SIPSEY FORK NEAR FALLS CITY AL	
USGS	<u>02450825</u>	CLEAR C AT NEW HOPE CHURCH NR POPLAR S	Iombigbee Basin, all listed
USGS	<u>02451000</u>	CLEAR CREEK AT FALLS CITY AL	site numbers were
USGS	<u>02451500</u>	SIPSEY FORK NEAR ARLEY AL	downloadadand
USGS	<u>02452000</u>	SIPSEY FORK NEAR JASPER AL	downloaded and
USGS	<u>02452500</u>	SIPSEY FORK NEAR SIPSEY AL	converted to xIsm files
USGS	<u>02453000</u>	BLACKWATER CREEK NEAR MANCHESTER AL	
Agency	Site Number	Site Na	me
USGS	<u>02453390</u>	TOWN CREEK AT 26TH ST AT JASPER, AL.	ted.
USGS	<u>02453500</u>	MULBERRY FORK AT CORDOVA AL	
USGS	02453835	TRINITY CREEK NEAR CARBON HILL AL	
USGS	<u>02454000</u>	LOST CREEK NEAR OAKMAN AL	
USGS	<u>02454055</u>	LOST CREEK ABOVE PARRISH, AL.	
USGS	02454200	WOLF CREEK NEAR OAKMAN AL	
USGS	302416087505501	ww 13-usgs 302416087505501	

Data Collection

NCDC Precipitation & Air Temperature

Program Daily Flows

Program Water Level

Program Move & Make

.dker.xlsm - Module1 (Code)			~	Maker.xlsm - Module2 (Code)		
(General)	▼ Macro1	•	(G	eneral)	▼ play	•
For Each test If testSM Next	tSheet In ActiveWorkbook.Wo heet.Name Like "Old Data" I	rksheets 'hen flag =		Application.DisplayAlerts = Fa Dim file Dim path As String	lse the	
'' Any sheet If flag = Tru Applicati ActiveWon Applicati End If '' Adds Sheet	<pre>named "Old Data" it will h te Then ion.DisplayAlerts = False rkbook.Sheets("Old Data").D ion.DisplayAlerts = True t</pre>	e deleted Delete		files collecte NCDC were into .cvs and	ed from e converted d sorted by	
Sheets.Ad i = i	dd.Name = "Old Data"			date.		eı
Worksheets(firsts Worksheets(firsts Worksheets(firsts Worksheets(firsts Selection.Cut i = i	sheet).Activate sheet).Range("A2").Select sheet).Range(Selection, Sel sheet).Range("A2:S2").Offse	ection.End(et(count, 0)		The program retrieved site station num	n also e names anc bers to assist	k
Worksheets("Old I Range("A2 Selection Worksheets(firsts	Data").Activate 2").Select 1.Paste Rheet).Activate			the user in v specific loca	erifying ations.	
i = i If IsEmpty(Range Else	("A2").Offset(count + 1, 0)) Then		Call Macrol		
Range("A2").Offse Range(Selection,	et(count + 1, 0).Select Selection.End(xlToRight)).	Select		ActiveWorkbook.Close SaveChan	ges:=True	

Program Soil Test Analysis

23

•

Instruction / Details

1. Select a Folder with files that contain pH, Phosphorus, and/or CEC values of Counties

Select Folder

->When selecting a valid folder, the program will post the average, standard deviatoin and sample size for each parameter of each county.

->In summary, the post values in each file will be recorded in this workbook on the "Summary Page".

```
.ReadingOrder = xlContext
.MergeCells = False
End With
With Selection
.HorizontalAlignment = xlCenter
.VerticalAlignment = xlCenter
.WrapText = False
.Orientation = 0
.AddIndent = False
.IndentLevel = 0
```

The program Soil Test Analysis allows the user to select a folder that include data soil test files.

These types of files are compromised of pH, Phosphorus, and CEC values from 20 different counties.

Soil Test Analysis post averages, standard deviations, and sample sizes of each year in one county.

```
ActiveCell.FormulaR1C1 = "CEC Mean"

Range("P2").Select

ActiveCell.FormulaR1C1 = "CEC Stndrd. Dev."

Columns("G:P").Select

With Selection

.HorizontalAlignment = xlGeneral

.VerticalAlignment = xlCenter

.WrapText = False

.Orientation = 0
```

Software Application PKFQWin

Using the peakfq watstore files downloaded from the USGS database, PKFQWin uses the peak flow values to create plots.

~	PKFQWi	n															• 🔀		
F	le Help																		
Use File menu to Open PeakFQ data or PKFQWin spec file. Update Station and Output specifications as desired. Click Run PeakFQ button to generate results.							PEA PKF	PEAKFQ Data File: PKFQWin Spec File:											
ſ		Statio	on Specifi	cations				Ou	tput Oj	ptions			Results						
		Include in	Beginning	Ending	Historic	Skew	Generalized	Gen Skew	Mean	Low Hist	Lo-Outlier	High Sys	Hi-Outlier	Gage Base	Urban/Reg				
	Station ID	Analysis?	Year	Year	Period	Option	Skew	Std Error	SqrErr	Peak	Threshold	Peak	Threshold	Discharge	Peaks	Latitude	Longitur		
																	- 1		
																	- 1		
																	- 1		
																	- 1		
																	- 1		
	•																▶		
											<u>R</u> u	n PEAKF	Q	<u>S</u> ave Spe	CS		E <u>x</u> it		

Soille Reading is

		В	С	D	E	F	G	Н	1	J	К	L	М	N	0	Р	Q	R	S	T
	JUMMARY																			
-	Per County	Phosphorus	Р	рН	CEC	Phosphorus	Р	pН	CEC	Phosphorus	Р	рН	CEC	Phosphorus	Р	pН	CEC	Phosphorus	Р	pН
3	County	0-18				19-36				37-72				73-144				>144		
4	Amite	#Samples	Mean	Mean	Mean	#Samples	Mean	Mean	Mean	#Samples	Mean	Mean	Mean	#Samples	Mean	Mean	Mean	#Samples	Mean	Mean
5	2002-2003	13	12.07692308	79.9	95.89	9	25.4444444	52.8	63.94	10	53.8	59.8	90.29	4	112.25	21.3	33.07	5	201.6	27.8
6	2003-2004	12	7.416666667	67.6	83.24	12	30.25	68.1	95.59	5	59.8	29.3	42.52	7	90.14285714	40.4	58.2	3	162.3333333	16.4
7	2004-2005	16	14.0625	88.3	143.1	11	26.09090909	57.4	92.36	1	39	5.5	5.28	6	98.33333333	31.5	54.92	4	211.5	18.7
8	2005-2006	28	9.5	153.3	222.65	9	27.4444444	47.5	69.66	28	49.14285714	147.8	209.13	14	104.4285714	79.7	127.08	21	233.8571429	118.3
9	2006-2007	5	15.4	25.6	37.88	22	28.45454545	118.3	171.07	20	53.95	104.9	154.14	13	103.3846154	69.6	106.45	22	236.3636364	121
10	2007-2008	2	13.5	11.3	15.43	4	29	21.7	34.33	23	53.56521739	127.6	206.23	14	101.1428571	76.7	127.31	15	270.0666667	84.4
11	2008-2009	6	14.83333333	31.5	51.68	6	28.5	34	49.39	15	51.66666667	86.5	149.13	5	95	26.2	41.95	23	195.5217391	124.8
12	2009-2010	1	9	4.9	7.48	15	28	87.2	113.97	14	53.71428571	79.6	125.13	19	95.68421053	106.9	167.63	11	293	63.7
13	2010-2011	2	16	12.7	14.54	3	31.33333333	17	21.37	4	57.5	22.7	31.27	3	109.6666667	19.3	25.94	20	286.25	121.8
14	2011-2012	3	13	16.6	21.38	7	26.85714286	37.6	54.85	8	55.125	46.1	70.38	10	97.6	55.8	99.29	16	536.8125	95.8
15																				
16																				
17	SUMMARY																			
18	Per County	Phosphorus	Р	рН	CEC	Phosphorus	Р	рН	CEC	Phosphorus	Р	рН	CEC	Phosphorus	Р	рН	CEC	Phosphorus	Р	pН
19	County	0-18				19-36				37-72				73-144				>144		
20	Copiah	#Samples	Mean	Mean	Mean	#Samples	Mean	Mean	Mean	#Samples	Mean	Mean	Mean	#Samples	Mean	Mean	Mean	#Samples	Mean	Mean
21	2002-2003	120	12.06666667	700.1	1062.43	82	26.2195122	476.4	767.87	47	52.38297872	272.6	449.91	27	100.5185185	161.4	275.5	42	490.4047619	249.2
22	2003-2004	22	10.59090909	129	174.09	17	27.70588235	97.1	154.28	9	52.55555556	51.4	80.01	11	104.2727273	59.4	103.32	18	371.8888889	102.4
23	2004-2005	19	10.15789474	100.7	167.2	6	25.66666667	32.6	52.53	2	67	11.5	17.76	5	113.6	29.5	64.09	7	355.8571429	40.9
24	2005-2006	7	13	39.5	60.64	12	27.25	68.9	119.72	26	49.03846154	147	251.58	10	97.5	54.1	89.28	8	258.375	48.4
25	2006-2007	5	13.2	26.5	48.52	18	29	99.9	176.75	28	52.21428571	153.8	283.36	19	105.2105263	106.8	220.07	19	225.8421053	104
26	2007-2008	9	7.666666667	51.2	82.24	9	23.77777778	47.7	85.58	24	55.20833333	141	284.54	27	102.9259259	151.7	306.11	21	378.952381	•
27	2008-2009	2	15.5	12.7	17.8	6	26.66666667	36.8	73.03	17	52	96.3	171.3	12	100.75	69.4	130.79	13	357.07605	

Standard Deviation

Avg. Max. Water Depth

Conclusions

Tombigbee Basin

The data collected and results from the programs assisted the Tombigbee Basin area with the following:

- Developing a water balance
- Alternatives for water supply
- Essential data for future analyses

Challenges Encountered

- Time management
- Learning Visual Basics for Application and debugging code

Microsoft Visual Basic
Run-time error '3075': Syntax error (missing operator) in query expression 'tblStaff.Office=Amsterdam' AND tblStaff.Department='Design' AND tblStaff.Gender='M' ORDER BY tblStaff.LastName,tblStaff.FirstName;'.
<u>⊂ontinue</u> <u>E</u> nd <u>Debug</u> <u>H</u> elp

 Applying programming knowledge to assigned task

Skills Attained

- Learned proper procedures to clean and sterilize
 laboratory equipment
- Acquired a whole new programming language under my belt Visual Basics for Application
- Greater understanding for programming for real world application
- Improved programming techniques that provide better efficiency without loss of quality

Thoughts

- The NOAA-NGI internship program has made me feel very fortunate to be chosen.
- The experience that I've gained through this internship truly advanced my skills and learning.
- NOAA as a career would be an ideal profession that I have come to recognize (unsure what to write for this part section)

Acknowledgements

A special thank you to John Ramirez & Sandra Ortega for putting up with me for 9-weeks and letting me work under them as an intern.

MSU CE Department for providing me a cozy cubicle.

JoAnn Moody for ensuring the internship's success.

Everyone at Dauphin Island Sea Lab, North Gulf Institute, North Oceanic and Atmospheric Administration who helped make this internship possible.

