## EFFECT OF OYSTER ATTRIBUTES ON WILLINGNESS TO PAY FOR RAW OYSTERS



## About me

- First year M.Sc. Student
- Agricultural Economics, Mississippi State University
- Research Interest
> Environmental Economics
* Non-market valuation
* Resource economics
> Climate Change
* Adaption strategies
* Mitigation policies

$>$ Food security


## Mentor

- Dr. Daniel R. Petrolia
- Associate Professor at the Department of Agricultural Economics, Mississippi State University
- Areas of Interest

$>$ Environmental and Natural resource economics
$>$ Non-market Valuation


## Background

- The project seeks to investigate the effect of oyster attributes on WTP for raw oysters.
- Specifically it focusses on the effect of oyster attributes on Gulf and NonGulf markets for raw oysters.
- What constitute Product Attribute?
$>$ Price
> Name of oyster
$>$ Wild
$>$ Salt
> Size
- Price of oysters ranges from a minimum of $\$ 7$ to a maximum of $\$ 18$
- Salt level is categorized into
- sweet
- mildly salty
- salty
- saltiness varies
- Size is also grouped into
- small sized
- medium sized
- large sized
- sizes vary
- Wild
- wild caught
- cultivated
- Name
a.) Apalachicola Bay, Florida
g.) Cape Cod, Massachusetts
b.) Chesapeake Bay, Virginia
h.) Coastal Louisiana
c.) Hood canal, Washington
i.) Netarts Bay, Oregon
d.) Galveston Bay, Texas
j.) Bay Saint Louis, Mississippi
e.) Willipa Bay Washington
k.) Gulf of Mexico
f). Point aux Pins, Alabama
1.) Moonstones, Rhode Island


## Survey Data

- A survey questionnaire was administered by GfK Custom Research to panelists on their Knowledge Panel.
- The panelists were screened for respondents that consume raw oysters at least once a year.
- Respondents indicated
$>$ oyster variety they are most likely to buy at the stated price,
$>$ oyster variety they are least likely to buy at stated prices.
- Imagine you were at a restaurant that is known to serve high quality raw oysters on the half-shell in say November, and that the following selection of oysters is on the menu at the following prices.
- Suppose they sold only as a half -dozen and you could only order one variety of oysters at a time.
- Based on the menu shown below, which oyster are you most likely to buy and which oyster are you least likely to buy.

| Oysters on the half-shell | Price per <br> half-dozen | Most likely <br> to buy | Least likely <br> to buy |
| :--- | :---: | :---: | :---: |
| Point aux Pins, Grand Bay, Alabama <br> Cultivated oysters, medium sized, mildly salty | $\$ 12$ | $\checkmark$ |  |
| Cape Cod, Massachusetts <br> Wild oysters, small size, sweet | $\$ 18$ |  | $\checkmark$ |
| Gulf of Mexico <br> Wild oysters, sizes vary, saltiness varies | $\$ 9$ |  |  |
| $[\quad$ I am not willing to buy any of these oysters at these prices. |  |  |  |

## What I did

- Using Stata commands I created the following variables
- Dependent variable
- Vote (which indicated the choice respondents made)
- Independent variables
- Name of oysters (each name was coded as binary)
- Price
- Size
- Salt
- Wild
- High-Information
- Generic
- All these variables were hidden in the choice information obtain from the survey data.

The results of the variables generated for analysis were of the form as shown below:

| Name | Size | Salt | Wild | vote | Price |  | Chesapeake | Gulf_of_Mexico | High_Info | GENERIC |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 4 | 1 | 1 | 1 | 0 | 18 | 0 | 0 | 0 | 0 | 0 |
|  | 11 | 2 | 2 | 1 | 1 | 10 | 0 | 0 | 0 | 0 | 0 |
|  | 13 | 4 | 4 | 1 | 0 | 16 | 0 | 0 | 0 | 0 | 0 |
|  | 4 | 1 | 1 | 1 | 0 | 14 | 0 | 0 | 0 | 0 | 0 |
|  | 11 | 2 | 2 | 1 | 0 | 16 | 0 | 0 | 0 | 0 | 0 |
|  | 7 | 3 | 1 | 2 | 1 | 14 | 0 | 0 | 0 | 0 | 0 |
|  | 8 | 2 | 2 | 1 | 0 | 18 | 0 | 0 | 0 | 1 | 1 |
|  | 13 | 4 | 4 | 1 | 0 | 12 | 0 | 0 | 0 | 1 | 1 |
|  | 7 | 3 | 1 | 2 | 1 | 7 | 0 | 0 | 1 | 1 | 1 |
|  | 13 | 4 | 4 | 1 | 0 | 18 | 0 | 0 | 0 | 1 | 1 |
|  | 4 | 1 | 2 | 2 | 1 | 12 | 0 | 0 | 0 | 1 | 1 |
|  | 1 | 2 | 1 | 2 | 0 | 16 | 1 | 1 | 0 | 1 | 1 |
|  | 13 | 4 | 4 | 1 | 1 | 18 | 0 | 0 | 0 | 1 | 1 |
|  | 1 | 2 | 1 | 2 | 0 | 9 | 0 | 0 | 1 | 1 | 1 |
|  | 13 | 4 | 4 | 1 | 0 | 16 | 1 | 1 | 0 | 1 | 1 |
|  | 7 | 1 | 2 | 2 | 1 | 9 | 0 | 0 | 1 | 1 | 1 |
|  | 11 | 1 | 2 | 2 | 1 | 10 | 0 | 0 | 0 | 1 | 1 |
|  | 13 | 4 | 4 | 1 | 0 | 14 | 0 | 0 | 1 | 1 | 0 |

# Alternative - Specific conditional logit (McFadden's choice) model 

```
asclogit vote Price _actual Size Salt Wild _transform Point Lonesome Saint_Louis _ Portersville
Chesapeake Apalachicola if GENERIC == 0, case (id) alternatives (alternative)
asclogit, or
```

Table 1: Summary statistics

| Number of observations | 3409 |
| :--- | :---: |
| Number of cases | 1357 |
| Wald chi2 (12) | 86.85 |
| Prob $>$ chi2 | 0.0000 |
| Log likelihood | -1174.9702 |

## Alternative - Specific conditional logit (McFadden's choice) model

Table 2: Summary of asclogit regression results

| Dependent Variable: vote | Odds ratio | Standard error |
| :--- | :--- | :--- |
|  |  |  |
| Price_actual | $0.928460^{* * *}$ | 0.0117141 |
| Size | $1.114737 * *$ | 0.0524711 |
| Salt | $0.795986^{* * *}$ | 0.0369965 |
| Wild_transform | $1.284179 * * *$ | 0.1044578 |
| Lonesome Reef | 0.802488 | 0.1165321 |
| Point | $0.763466^{* *}$ | 0.1035976 |
| Saint_Louis | $0.730542^{* *}$ | 0.1031993 |
| Portersville | 0.850465 | 0.1095069 |
| Chesapeake Bay | 1.180712 | 0.1751978 |
| Apalachicola Bay | 0.891371 | 0.1362688 |

## Interpretation of results

The results indicate that

- A dollar increase in the price of raw oysters decreases the likelihood that a consumer will purchase raw oyster.
> An increase in the size of raw oysters increases the likelihood that a consumer will purchase raw oysters.
> Increasing the saltiness of raw oysters decreases the likelihood that a consumers will demand raw oysters at that level of saltiness.
> Raw oyster consumers are more likely to buy wild caught oysters over cultivated oysters.
. Raw oyster consumers are less likely to choose gulf oysters over East coast or West coast oysters.


## Overall Experience

- Develop a better understanding choice experiments and it analysis.
- Improved my skills in Stata
- Got acquitted with Stata functions
- Had a better understanding of Stata commands
- Caution and ethics in research work
- Research work should be approached with extreme care in order not to affect your results
- In cases where human beings are the subjects ethical concerns should be observed.
- Learned to work as a team


## Challenges

- Writing efficient Stata commands to reshape data to usable form for analysis
- Correctly interpreting results of the analysis


## Value of my internship experience

- The experience I had these past two months has help me to understand the analytical aspect of my chosen area of interest.
- I hope to build on this fundamental analytical knowledge and pursue my career objectives better informed.


## Acknowledgements

- Dr. Daniel R. Petrolia

(



- NGI
- Dauphin Island Sea Lab


## Thank you


(鬲) MISSISSIPPI STATE

